WindEmu/WindCore/emu.cpp

695 lines
22 KiB
C++
Raw Normal View History

2019-12-19 00:27:23 +00:00
#include "emu.h"
#include "wind.h"
#include "wind_hw.h"
#include <time.h>
2019-12-19 17:40:49 +00:00
#define INCLUDE_BANK1
2019-12-19 00:27:23 +00:00
Emu::Emu() {
}
uint32_t Emu::getRTC() {
return time(nullptr) - 946684800;
}
uint32_t Emu::readReg8(uint32_t reg) {
if ((reg & 0xF00) == 0x600) {
return uart1.readReg8(reg & 0xFF);
} else if ((reg & 0xF00) == 0x700) {
return uart2.readReg8(reg & 0xFF);
} else if (reg == TC1CTRL) {
return tc1.config;
} else if (reg == TC2CTRL) {
return tc2.config;
} else if (reg == PADR) {
return readKeyboard();
} else if (reg == PBDR) {
return (portValues >> 16) & 0xFF;
} else if (reg == PCDR) {
return (portValues >> 8) & 0xFF;
} else if (reg == PDDR) {
return portValues & 0xFF;
} else if (reg == PADDR) {
return (portDirections >> 24) & 0xFF;
} else if (reg == PBDDR) {
return (portDirections >> 16) & 0xFF;
} else if (reg == PCDDR) {
return (portDirections >> 8) & 0xFF;
} else if (reg == PDDDR) {
return portDirections & 0xFF;
} else {
// printf("RegRead8 unknown:: pc=%08x lr=%08x reg=%03x\n", cpu.gprs[ARM_PC]-4, cpu.gprs[ARM_LR], reg);
return 0xFF;
}
}
uint32_t Emu::readReg32(uint32_t reg) {
if (reg == LCDCTL) {
printf("LCD control read pc=%08x lr=%08x !!!\n", cpu.gprs[ARM_PC], cpu.gprs[ARM_LR]);
return lcdControl;
} else if (reg == LCDST) {
printf("LCD state read pc=%08x lr=%08x !!!\n", cpu.gprs[ARM_PC], cpu.gprs[ARM_LR]);
return 0xFFFFFFFF;
} else if (reg == PWRSR) {
// printf("!!! PWRSR read pc=%08x lr=%08x !!!\n", cpu.gprs[ARM_PC], cpu.gprs[ARM_LR]);
return pwrsr;
} else if (reg == INTSR) {
return pendingInterrupts & interruptMask;
} else if (reg == INTRSR) {
return pendingInterrupts;
} else if (reg == INTENS) {
return interruptMask;
} else if ((reg & 0xF00) == 0x600) {
return uart1.readReg32(reg & 0xFF);
} else if ((reg & 0xF00) == 0x700) {
return uart2.readReg32(reg & 0xFF);
} else if (reg == TC1VAL) {
return tc1.value;
} else if (reg == TC2VAL) {
return tc2.value;
} else if (reg == SSSR) {
// printf("!!! SSSR kludge! !!!\n");
return 0;
} else if (reg == RTCDRL) {
// uint16_t v = getRTC() & 0xFFFF;
uint16_t v = rtc & 0xFFFF;
// printf("RTCDRL: %04x\n", v);
return v;
} else if (reg == RTCDRU) {
// uint16_t v = getRTC() >> 16;
uint16_t v = rtc >> 16;
// printf("RTCDRU: %04x\n", v);
return v;
} else if (reg == KSCAN) {
return kScan;
} else {
// printf("RegRead32 unknown:: pc=%08x lr=%08x reg=%03x\n", cpu.gprs[ARM_PC]-4, cpu.gprs[ARM_LR], reg);
return 0xFFFFFFFF;
}
}
void Emu::writeReg8(uint32_t reg, uint8_t value) {
if ((reg & 0xF00) == 0x600) {
uart1.writeReg8(reg & 0xFF, value);
} else if ((reg & 0xF00) == 0x700) {
uart2.writeReg8(reg & 0xFF, value);
} else if (reg == TC1CTRL) {
tc1.config = value;
} else if (reg == TC2CTRL) {
tc2.config = value;
} else if (reg == PADR) {
uint32_t oldPorts = portValues;
portValues &= 0x00FFFFFF;
portValues |= (uint32_t)value << 24;
diffPorts(oldPorts, portValues);
} else if (reg == PBDR) {
uint32_t oldPorts = portValues;
portValues &= 0xFF00FFFF;
portValues |= (uint32_t)value << 16;
if ((portValues & 0x10000) && !(oldPorts & 0x10000))
etna.setPromBit0High();
else if (!(portValues & 0x10000) && (oldPorts & 0x10000))
etna.setPromBit0Low();
if ((portValues & 0x20000) && !(oldPorts & 0x20000))
etna.setPromBit1High();
diffPorts(oldPorts, portValues);
2019-12-19 00:27:23 +00:00
} else if (reg == PCDR) {
uint32_t oldPorts = portValues;
portValues &= 0xFFFF00FF;
portValues |= (uint32_t)value << 8;
diffPorts(oldPorts, portValues);
} else if (reg == PDDR) {
uint32_t oldPorts = portValues;
portValues &= 0xFFFFFF00;
portValues |= (uint32_t)value;
diffPorts(oldPorts, portValues);
} else if (reg == PADDR) {
portDirections &= 0x00FFFFFF;
portDirections |= (uint32_t)value << 24;
} else if (reg == PBDDR) {
portDirections &= 0xFF00FFFF;
portDirections |= (uint32_t)value << 16;
} else if (reg == PCDDR) {
portDirections &= 0xFFFF00FF;
portDirections |= (uint32_t)value << 8;
} else if (reg == PDDDR) {
portDirections &= 0xFFFFFF00;
portDirections |= (uint32_t)value;
} else if (reg == KSCAN) {
kScan = value;
} else {
// printf("RegWrite8 unknown:: pc=%08x reg=%03x value=%02x\n", cpu.gprs[ARM_PC]-4, reg, value);
}
}
void Emu::writeReg32(uint32_t reg, uint32_t value) {
if (reg == LCDCTL) {
printf("LCD: ctl write %08x\n", value);
lcdControl = value;
} else if (reg == LCD_DBAR1) {
printf("LCD: address write %08x\n", value);
lcdAddress = value;
} else if (reg == LCDT0) {
printf("LCD: horz timing write %08x\n", value);
} else if (reg == LCDT1) {
printf("LCD: vert timing write %08x\n", value);
} else if (reg == LCDT2) {
printf("LCD: clocks write %08x\n", value);
} else if (reg == INTENS) {
// diffInterrupts(interruptMask, interruptMask | value);
interruptMask |= value;
} else if (reg == INTENC) {
// diffInterrupts(interruptMask, interruptMask &~ value);
interruptMask &= ~value;
} else if (reg == HALT) {
cpu.halted = true;
// BLEOI = 0x410,
// MCEOI = 0x414,
} else if (reg == TEOI) {
pendingInterrupts &= ~(1 << TINT);
// TEOI = 0x418,
// STFCLR = 0x41C,
// E2EOI = 0x420,
} else if ((reg & 0xF00) == 0x600) {
uart1.writeReg32(reg & 0xFF, value);
} else if ((reg & 0xF00) == 0x700) {
uart2.writeReg32(reg & 0xFF, value);
} else if (reg == TC1LOAD) {
tc1.load(value);
} else if (reg == TC1EOI) {
pendingInterrupts &= ~(1 << TC1OI);
} else if (reg == TC2LOAD) {
tc2.load(value);
} else if (reg == TC2EOI) {
pendingInterrupts &= ~(1 << TC2OI);
} else {
// printf("RegWrite32 unknown:: pc=%08x reg=%03x value=%08x\n", cpu.gprs[ARM_PC]-4, reg, value);
}
}
bool Emu::isPhysAddressValid(uint32_t physAddress) const {
uint8_t region = (physAddress >> 24) & 0xF1;
switch (region) {
case 0: return true;
case 0x80: return (physAddress <= 0x80000FFF);
case 0xC0: return true;
case 0xC1: return true;
case 0xD0: return true;
case 0xD1: return true;
default: return false;
}
}
2019-12-19 00:27:23 +00:00
uint32_t Emu::readPhys8(uint32_t physAddress) {
uint32_t result = 0xFF;
2019-12-19 17:40:49 +00:00
uint8_t region = (physAddress >> 24) & 0xF1;
2019-12-19 00:27:23 +00:00
if (region == 0)
result = ROM[physAddress & 0xFFFFFF];
else if (region == 0x20 && physAddress <= 0x20000FFF)
result = etna.readReg8(physAddress & 0xFFF);
else if (region == 0x80 && physAddress <= 0x80000FFF)
2019-12-19 00:27:23 +00:00
result = readReg8(physAddress & 0xFFF);
else if (region == 0xC0)
result = MemoryBlockC0[physAddress & MemoryBlockMask];
#ifdef INCLUDE_BANK1
else if (region == 0xC1)
result = MemoryBlockC1[physAddress & MemoryBlockMask];
#endif
else if (region == 0xD0)
result = MemoryBlockD0[physAddress & MemoryBlockMask];
#ifdef INCLUDE_BANK1
else if (region == 0xD1)
result = MemoryBlockD1[physAddress & MemoryBlockMask];
#endif
2019-12-19 00:27:23 +00:00
// else
// printf("<%08x> unmapped read8 addr p:%08x\n", cpu.gprs[ARM_PC] - 4, physAddress);
return result;
}
uint32_t Emu::readPhys16(uint32_t physAddress) {
uint32_t result = 0xFFFFFFFF;
2019-12-19 17:40:49 +00:00
uint8_t region = (physAddress >> 24) & 0xF1;
2019-12-19 00:27:23 +00:00
if (region == 0)
LOAD_16LE(result, physAddress & 0xFFFFFF, ROM);
else if (region == 0xC0)
LOAD_16LE(result, physAddress & MemoryBlockMask, MemoryBlockC0);
#ifdef INCLUDE_BANK1
else if (region == 0xC1)
LOAD_16LE(result, physAddress & MemoryBlockMask, MemoryBlockC1);
#endif
else if (region == 0xD0)
LOAD_16LE(result, physAddress & MemoryBlockMask, MemoryBlockD0);
#ifdef INCLUDE_BANK1
else if (region == 0xD1)
LOAD_16LE(result, physAddress & MemoryBlockMask, MemoryBlockD1);
#endif
2019-12-19 00:27:23 +00:00
// else
// printf("<%08x> unmapped read16 addr p:%08x\n", cpu.gprs[ARM_PC] - 4, physAddress);
return result;
}
uint32_t Emu::readPhys32(uint32_t physAddress) {
uint32_t result = 0xFFFFFFFF;
2019-12-19 17:40:49 +00:00
uint8_t region = (physAddress >> 24) & 0xF1;
2019-12-19 00:27:23 +00:00
if (region == 0)
LOAD_32LE(result, physAddress & 0xFFFFFF, ROM);
else if (region == 0x20 && physAddress <= 0x20000FFF)
result = etna.readReg32(physAddress & 0xFFF);
else if (region == 0x80 && physAddress <= 0x80000FFF)
2019-12-19 00:27:23 +00:00
result = readReg32(physAddress & 0xFFF);
else if (region == 0xC0)
LOAD_32LE(result, physAddress & MemoryBlockMask, MemoryBlockC0);
#ifdef INCLUDE_BANK1
else if (region == 0xC1)
LOAD_32LE(result, physAddress & MemoryBlockMask, MemoryBlockC1);
#endif
else if (region == 0xD0)
LOAD_32LE(result, physAddress & MemoryBlockMask, MemoryBlockD0);
#ifdef INCLUDE_BANK1
else if (region == 0xD1)
LOAD_32LE(result, physAddress & MemoryBlockMask, MemoryBlockD1);
#endif
2019-12-19 00:27:23 +00:00
// else
// printf("<%08x> unmapped read32 addr p:%08x\n", cpu.gprs[ARM_PC] - 4, physAddress);
return result;
}
void Emu::writePhys8(uint32_t physAddress, uint8_t value) {
2019-12-19 17:40:49 +00:00
uint8_t region = (physAddress >> 24) & 0xF1;
if (region == 0xC0)
MemoryBlockC0[physAddress & MemoryBlockMask] = (uint8_t)value;
#ifdef INCLUDE_BANK1
else if (region == 0xC1)
MemoryBlockC1[physAddress & MemoryBlockMask] = (uint8_t)value;
#endif
else if (region == 0xD0)
MemoryBlockD0[physAddress & MemoryBlockMask] = (uint8_t)value;
#ifdef INCLUDE_BANK1
else if (region == 0xD1)
MemoryBlockD1[physAddress & MemoryBlockMask] = (uint8_t)value;
#endif
else if (region == 0x20 && physAddress <= 0x20000FFF)
etna.writeReg8(physAddress & 0xFFF, value);
else if (region == 0x80 && physAddress <= 0x80000FFF)
writeReg8(physAddress & 0xFFF, value);
2019-12-19 00:27:23 +00:00
// else
// printf("<%08x> unmapped write8 addr p:%08x :: %02x\n", cpu.gprs[ARM_PC] - 4, physAddress, value);
}
void Emu::writePhys16(uint32_t physAddress, uint16_t value) {
2019-12-19 17:40:49 +00:00
uint8_t region = (physAddress >> 24) & 0xF1;
if (region == 0xC0)
STORE_16LE(value, physAddress & MemoryBlockMask, MemoryBlockC0);
#ifdef INCLUDE_BANK1
else if (region == 0xC1)
STORE_16LE(value, physAddress & MemoryBlockMask, MemoryBlockC1);
#endif
else if (region == 0xD0)
STORE_16LE(value, physAddress & MemoryBlockMask, MemoryBlockD0);
#ifdef INCLUDE_BANK1
else if (region == 0xD1)
STORE_16LE(value, physAddress & MemoryBlockMask, MemoryBlockD1);
#endif
2019-12-19 00:27:23 +00:00
// else
// printf("<%08x> unmapped write16 addr p:%08x :: %04x\n", cpu.gprs[ARM_PC] - 4, physAddress, value);
}
void Emu::writePhys32(uint32_t physAddress, uint32_t value) {
2019-12-19 17:40:49 +00:00
uint8_t region = (physAddress >> 24) & 0xF1;
if (region == 0xC0)
STORE_32LE(value, physAddress & MemoryBlockMask, MemoryBlockC0);
#ifdef INCLUDE_BANK1
else if (region == 0xC1)
STORE_32LE(value, physAddress & MemoryBlockMask, MemoryBlockC1);
#endif
else if (region == 0xD0)
STORE_32LE(value, physAddress & MemoryBlockMask, MemoryBlockD0);
#ifdef INCLUDE_BANK1
else if (region == 0xD1)
STORE_32LE(value, physAddress & MemoryBlockMask, MemoryBlockD1);
#endif
else if (region == 0x20 && physAddress <= 0x20000FFF)
etna.writeReg32(physAddress & 0xFFF, value);
else if (region == 0x80 && physAddress <= 0x80000FFF)
2019-12-19 00:27:23 +00:00
writeReg32(physAddress & 0xFFF, value);
// else
// printf("<%08x> unmapped write32 addr p:%08x :: %08x\n", cpu.gprs[ARM_PC] - 4, physAddress, value);
}
uint32_t Emu::virtToPhys(uint32_t virtAddress) {
if (!isMMU())
return virtAddress;
// find the TTB
uint32_t ttbEntryAddr = translationTableBase & 0xFFFFC000;
ttbEntryAddr |= ((virtAddress & 0xFFF00000) >> 18);
uint32_t ttbEntry = readPhys32(ttbEntryAddr);
if ((ttbEntry & 3) == 1) {
// Page
uint32_t pageTableAddr = ttbEntry & 0xFFFFFC00;
pageTableAddr |= ((virtAddress & 0x000FF000) >> 10);
uint32_t pageTableEntry = readPhys32(pageTableAddr);
if ((pageTableEntry & 3) == 1) {
// Large Page
uint32_t lpBaseAddr = pageTableEntry & 0xFFFF0000;
return lpBaseAddr | (virtAddress & 0x0000FFFF);
} else if ((pageTableEntry & 3) == 2) {
// Small Page
uint32_t lpBaseAddr = pageTableEntry & 0xFFFFF000;
return lpBaseAddr | (virtAddress & 0x00000FFF);
} else {
// Fault/Reserved
// TODO: should raise Abort here?
printf("!!! lv2 bad entry=%d vaddr=%08x !!!\n", pageTableEntry & 3, virtAddress);
return 0xFFFFFFFF;
}
} else if ((ttbEntry & 3) == 2) {
// Section
uint32_t sectBaseAddr = ttbEntry & 0xFFF00000;
return sectBaseAddr | (virtAddress & 0x000FFFFF);
} else {
// Fault/Reserved
// TODO: should raise Abort here?
printf("!!! lv1 bad entry=%d vaddr=%08x !!!\n", ttbEntry & 3, virtAddress);
return 0xFFFFFFFF;
}
}
void Emu::configure() {
if (configured) return;
configured = true;
uart1.cpu = &cpu;
uart2.cpu = &cpu;
memset(&tc1, 0, sizeof(tc1));
memset(&tc2, 0, sizeof(tc1));
cpu.owner = this;
nextTickAt = TICK_INTERVAL;
rtc = getRTC();
configureMemoryBindings();
configureCpuHandlers();
ARMReset(&cpu);
}
void Emu::configureMemoryBindings() {
cpu.memory.load8 = [](struct ARMCore *cpu, uint32_t address, int *) {
return ((Emu *)cpu->owner)->readVirt8(address);
};
cpu.memory.load16 = [](struct ARMCore *cpu, uint32_t address, int *) {
return ((Emu *)cpu->owner)->readVirt16(address);
};
cpu.memory.load32 = [](struct ARMCore *cpu, uint32_t address, int *) {
return ((Emu *)cpu->owner)->readVirt32(address);
};
cpu.memory.loadMultiple = [](struct ARMCore *cpu, uint32_t address, int mask, enum LSMDirection direction, int *cycleCounter) {
uint32_t value;
int i, offset = 4, popcount = 0;
if (direction & LSM_D) {
offset = -4;
popcount = popcount32(mask);
address -= (popcount << 2) - 4;
}
if (direction & LSM_B)
address += offset;
if (!mask) {
value = cpu->memory.load32(cpu, address, cycleCounter);
cpu->gprs[ARM_PC] = value;
address += 64;
}
for (i = 0; i < 16; i++) {
if (mask & (1 << i)) {
value = cpu->memory.load32(cpu, address, cycleCounter);
cpu->gprs[i] = value;
address += 4;
}
}
if (direction & LSM_B)
address -= offset;
if (direction & LSM_D)
address -= (popcount << 2) + 4;
return address;
};
cpu.memory.store8 = [](struct ARMCore *cpu, uint32_t address, int8_t value, int *) {
((Emu *)cpu->owner)->writeVirt8(address, value);
};
cpu.memory.store16 = [](struct ARMCore *cpu, uint32_t address, int16_t value, int *) {
((Emu *)cpu->owner)->writeVirt16(address, value);
};
cpu.memory.store32 = [](struct ARMCore *cpu, uint32_t address, int32_t value, int *) {
((Emu *)cpu->owner)->writeVirt32(address, value);
};
cpu.memory.storeMultiple = [](struct ARMCore *cpu, uint32_t address, int mask, enum LSMDirection direction, int *cycleCounter) {
uint32_t value;
2019-12-19 00:27:23 +00:00
int i, offset = 4, popcount = 0;
if (direction & LSM_D) {
offset = -4;
popcount = popcount32(mask);
address -= (popcount << 2) - 4;
}
if (direction & LSM_B)
address += offset;
if (!mask) {
value = cpu->gprs[ARM_PC] + 4;
cpu->memory.store32(cpu, address, value, cycleCounter);
address += 64;
}
for (i = 0; i < 16; i++) {
if (mask & (1 << i)) {
value = cpu->gprs[i];
if (i == ARM_PC) value += 4;
cpu->memory.store32(cpu, address, value, cycleCounter);
address += 4;
}
}
if (direction & LSM_B)
address -= offset;
if (direction & LSM_D)
address -= (popcount << 2) + 4;
return address;
};
cpu.memory.activeSeqCycles32 = 0;
cpu.memory.activeNonseqCycles32 = 0;
cpu.memory.stall = [](struct ARMCore *cpu, int32_t wait) {
return 0;
};
}
void Emu::configureCpuHandlers() {
cpu.irqh.reset = [](struct ARMCore *cpu) {
printf("reset...\n");
};
cpu.irqh.processEvents = [](struct ARMCore *cpu) {
// printf("processEvents...\n");
};
cpu.irqh.swi32 = [](struct ARMCore *cpu, int immediate) {
ARMRaiseSWI(cpu);
};
cpu.irqh.hitIllegal = [](struct ARMCore *cpu, uint32_t opcode) {
printf("hitIllegal... %08x\n", opcode);
};
cpu.irqh.bkpt32 = [](struct ARMCore *cpu, int immediate) {
printf("bkpt32... %08x\n", immediate);
};
cpu.irqh.readCPSR = [](struct ARMCore *cpu) {
// printf("readCPSR...\n");
// printf("at %08x our priv became %s\n", cpu->gprs[ARM_PC]-4, privname(cpu));
};
cpu.irqh.hitStub = [](struct ARMCore *cpu, uint32_t opcode) {
Emu *emu = (Emu *)cpu->owner;
if ((opcode & 0x0F100F10) == 0x0E100F10) {
// coprocessor read
int cpReg = (opcode & 0x000F0000) >> 16;
int armReg = (opcode & 0x0000F000) >> 12;
if (cpReg == 0)
cpu->gprs[armReg] = 0x41807100; //5mx device id
} else if ((opcode & 0x0F100F10) == 0x0E000F10) {
// coprocessor write
int cpReg = (opcode & 0x000F0000) >> 16;
int armReg = (opcode & 0x0000F000) >> 12;
if (cpReg == 1) {
emu->controlReg = cpu->gprs[armReg];
printf("mmu is now %s\n", emu->isMMU() ? "on" : "off");
} else if (cpReg == 2) {
emu->translationTableBase = cpu->gprs[armReg];
} else if (cpReg == 3) {
emu->domainAccessControl = cpu->gprs[armReg];
}
} else {
printf("hitStub... %08x\n", opcode);
}
};
}
void Emu::loadROM(const char *path) {
FILE *f = fopen(path, "rb");
fread(ROM, 1, sizeof(ROM), f);
fclose(f);
}
void Emu::executeUntil(int64_t cycles) {
2019-12-19 14:11:31 +00:00
if (!configured)
configure();
while (!asleep && cpu.cycles < cycles) {
2019-12-19 00:27:23 +00:00
if (cpu.cycles >= nextTickAt) {
// increment RTCDIV
if ((pwrsr & 0x3F) == 0x3F) {
rtc++;
pwrsr &= ~0x3F;
} else {
pwrsr++;
}
nextTickAt += TICK_INTERVAL;
pendingInterrupts |= (1<<TINT);
}
if (tc1.tick(cpu.cycles))
pendingInterrupts |= (1<<TC1OI);
if (tc2.tick(cpu.cycles))
pendingInterrupts |= (1<<TC2OI);
if ((pendingInterrupts & interruptMask & FIQ_INTERRUPTS) != 0)
ARMRaiseFIQ(&cpu);
if ((pendingInterrupts & interruptMask & IRQ_INTERRUPTS) != 0)
ARMRaiseIRQ(&cpu);
// if (cpu.cycles >= 30000000) {
// static bool lcdtest = false;
// if (!lcdtest) {
// printf("lcdtest\n");
// pendingInterrupts |= (1<<LCDINT);
// lcdtest = true;
// }
// }
// what's running?
if (cpu.halted) {
// keep the clock moving
cpu.cycles++;
} else {
uint32_t pc = cpu.gprs[ARM_PC] - 4;
uint32_t phys_pc = virtToPhys(pc);
debugPC(phys_pc);
ARMRun(&cpu);
2019-12-19 17:40:49 +00:00
uint32_t new_pc = cpu.gprs[ARM_PC] - 4;
if (_breakpoints.find(new_pc) != _breakpoints.end())
return;
2019-12-19 00:27:23 +00:00
}
}
}
void Emu::dumpRAM(const char *path) {
FILE *f = fopen(path, "wb");
fwrite(MemoryBlockC0, 1, sizeof(MemoryBlockC0), f);
fwrite(MemoryBlockC1, 1, sizeof(MemoryBlockC1), f);
fwrite(MemoryBlockD0, 1, sizeof(MemoryBlockD0), f);
fwrite(MemoryBlockD1, 1, sizeof(MemoryBlockD1), f);
2019-12-19 00:27:23 +00:00
fclose(f);
}
void Emu::printRegs() {
printf("R00:%08x R01:%08x R02:%08x R03:%08x\n", cpu.gprs[0], cpu.gprs[1], cpu.gprs[2], cpu.gprs[3]);
printf("R04:%08x R05:%08x R06:%08x R07:%08x\n", cpu.gprs[4], cpu.gprs[5], cpu.gprs[6], cpu.gprs[7]);
printf("R08:%08x R09:%08x R10:%08x R11:%08x\n", cpu.gprs[8], cpu.gprs[9], cpu.gprs[10], cpu.gprs[11]);
printf("R12:%08x R13:%08x R14:%08x R15:%08x\n", cpu.gprs[12], cpu.gprs[13], cpu.gprs[14], cpu.gprs[15]);
printf("cpsr=%08x spsr=%08x\n", cpu.cpsr.packed, cpu.spsr.packed);
}
const char *Emu::identifyObjectCon(uint32_t ptr) {
if (ptr == readVirt32(0x80000980)) return "process";
if (ptr == readVirt32(0x80000984)) return "thread";
if (ptr == readVirt32(0x80000988)) return "chunk";
// if (ptr == readVirt32(0x8000098C)) return "semaphore";
// if (ptr == readVirt32(0x80000990)) return "mutex";
if (ptr == readVirt32(0x80000994)) return "logicaldevice";
if (ptr == readVirt32(0x80000998)) return "physicaldevice";
if (ptr == readVirt32(0x8000099C)) return "channel";
if (ptr == readVirt32(0x800009A0)) return "server";
// if (ptr == readVirt32(0x800009A4)) return "unk9A4"; // name always null
if (ptr == readVirt32(0x800009AC)) return "library";
// if (ptr == readVirt32(0x800009B0)) return "unk9B0"; // name always null
// if (ptr == readVirt32(0x800009B4)) return "unk9B4"; // name always null
return NULL;
}
void Emu::fetchStr(uint32_t str, char *buf) {
if (str == 0) {
strcpy(buf, "<NULL>");
return;
}
int size = readVirt32(str);
for (int i = 0; i < size; i++) {
buf[i] = readVirt8(str + 4 + i);
}
buf[size] = 0;
}
void Emu::fetchName(uint32_t obj, char *buf) {
fetchStr(readVirt32(obj + 0x10), buf);
}
void Emu::fetchProcessFilename(uint32_t obj, char *buf) {
fetchStr(readVirt32(obj + 0x3C), buf);
}
void Emu::debugPC(uint32_t pc) {
char objName[1000];
if (pc == 0x2CBC4) {
// CObjectCon::AddL()
uint32_t container = cpu.gprs[0];
uint32_t obj = cpu.gprs[1];
const char *wut = identifyObjectCon(container);
if (wut) {
fetchName(obj, objName);
printf("OBJS: added %s at %08x <%s>", wut, obj, objName);
if (strcmp(wut, "process") == 0) {
fetchProcessFilename(obj, objName);
printf(" <%s>", objName);
}
printf("\n");
}
}
}
const uint8_t *Emu::getLCDBuffer() const {
if ((lcdAddress >> 24) == 0xC0)
return &MemoryBlockC0[lcdAddress & MemoryBlockMask];
2019-12-19 00:27:23 +00:00
else
return nullptr;
}
uint8_t Emu::readKeyboard() {
uint8_t val = 0;
if (kScan & 8) {
// Select one keyboard
int whichColumn = kScan & 7;
for (int i = 0; i < 7; i++)
if (keyboardKeys[whichColumn * 7 + i])
val |= (1 << i);
} else if (kScan == 0) {
// Report all columns combined
// EPOC's keyboard driver relies on this...
for (int i = 0; i < 8*7; i++)
if (keyboardKeys[i])
val |= (1 << (i % 7));
}
return val;
}