WindEmu/WindCore/isa-arm.c

742 lines
31 KiB
C
Raw Normal View History

2019-12-19 00:27:23 +00:00
/* Copyright (c) 2013-2014 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "isa-arm.h"
#include "arm.h"
#include "emitter-arm.h"
#include "isa-inlines.h"
#define PSR_USER_MASK 0xF0000000
#define PSR_PRIV_MASK 0x000000CF
#define PSR_STATE_MASK 0x00000020
// Addressing mode 1
static inline void _shiftLSL(struct ARMCore* cpu, uint32_t opcode) {
int rm = opcode & 0x0000000F;
if (opcode & 0x00000010) {
int rs = (opcode >> 8) & 0x0000000F;
++cpu->cycles;
int shift = cpu->gprs[rs];
if (rs == ARM_PC) {
shift += 4;
}
shift &= 0xFF;
int32_t shiftVal = cpu->gprs[rm];
if (rm == ARM_PC) {
shiftVal += 4;
}
if (!shift) {
cpu->shifterOperand = shiftVal;
cpu->shifterCarryOut = cpu->cpsr.c;
} else if (shift < 32) {
cpu->shifterOperand = shiftVal << shift;
cpu->shifterCarryOut = (shiftVal >> (32 - shift)) & 1;
} else if (shift == 32) {
cpu->shifterOperand = 0;
cpu->shifterCarryOut = shiftVal & 1;
} else {
cpu->shifterOperand = 0;
cpu->shifterCarryOut = 0;
}
} else {
int immediate = (opcode & 0x00000F80) >> 7;
if (!immediate) {
cpu->shifterOperand = cpu->gprs[rm];
cpu->shifterCarryOut = cpu->cpsr.c;
} else {
cpu->shifterOperand = cpu->gprs[rm] << immediate;
cpu->shifterCarryOut = (cpu->gprs[rm] >> (32 - immediate)) & 1;
}
}
}
static inline void _shiftLSR(struct ARMCore* cpu, uint32_t opcode) {
int rm = opcode & 0x0000000F;
if (opcode & 0x00000010) {
int rs = (opcode >> 8) & 0x0000000F;
++cpu->cycles;
int shift = cpu->gprs[rs];
if (rs == ARM_PC) {
shift += 4;
}
shift &= 0xFF;
uint32_t shiftVal = cpu->gprs[rm];
if (rm == ARM_PC) {
shiftVal += 4;
}
if (!shift) {
cpu->shifterOperand = shiftVal;
cpu->shifterCarryOut = cpu->cpsr.c;
} else if (shift < 32) {
cpu->shifterOperand = shiftVal >> shift;
cpu->shifterCarryOut = (shiftVal >> (shift - 1)) & 1;
} else if (shift == 32) {
cpu->shifterOperand = 0;
cpu->shifterCarryOut = shiftVal >> 31;
} else {
cpu->shifterOperand = 0;
cpu->shifterCarryOut = 0;
}
} else {
int immediate = (opcode & 0x00000F80) >> 7;
if (immediate) {
cpu->shifterOperand = ((uint32_t) cpu->gprs[rm]) >> immediate;
cpu->shifterCarryOut = (cpu->gprs[rm] >> (immediate - 1)) & 1;
} else {
cpu->shifterOperand = 0;
cpu->shifterCarryOut = ARM_SIGN(cpu->gprs[rm]);
}
}
}
static inline void _shiftASR(struct ARMCore* cpu, uint32_t opcode) {
int rm = opcode & 0x0000000F;
if (opcode & 0x00000010) {
int rs = (opcode >> 8) & 0x0000000F;
++cpu->cycles;
int shift = cpu->gprs[rs];
if (rs == ARM_PC) {
shift += 4;
}
shift &= 0xFF;
int shiftVal = cpu->gprs[rm];
if (rm == ARM_PC) {
shiftVal += 4;
}
if (!shift) {
cpu->shifterOperand = shiftVal;
cpu->shifterCarryOut = cpu->cpsr.c;
} else if (shift < 32) {
cpu->shifterOperand = shiftVal >> shift;
cpu->shifterCarryOut = (shiftVal >> (shift - 1)) & 1;
} else if (cpu->gprs[rm] >> 31) {
cpu->shifterOperand = 0xFFFFFFFF;
cpu->shifterCarryOut = 1;
} else {
cpu->shifterOperand = 0;
cpu->shifterCarryOut = 0;
}
} else {
int immediate = (opcode & 0x00000F80) >> 7;
if (immediate) {
cpu->shifterOperand = cpu->gprs[rm] >> immediate;
cpu->shifterCarryOut = (cpu->gprs[rm] >> (immediate - 1)) & 1;
} else {
cpu->shifterCarryOut = ARM_SIGN(cpu->gprs[rm]);
cpu->shifterOperand = cpu->shifterCarryOut;
}
}
}
static inline void _shiftROR(struct ARMCore* cpu, uint32_t opcode) {
int rm = opcode & 0x0000000F;
if (opcode & 0x00000010) {
int rs = (opcode >> 8) & 0x0000000F;
++cpu->cycles;
int shift = cpu->gprs[rs];
if (rs == ARM_PC) {
shift += 4;
}
shift &= 0xFF;
int shiftVal = cpu->gprs[rm];
if (rm == ARM_PC) {
shiftVal += 4;
}
int rotate = shift & 0x1F;
if (!shift) {
cpu->shifterOperand = shiftVal;
cpu->shifterCarryOut = cpu->cpsr.c;
} else if (rotate) {
cpu->shifterOperand = ROR(shiftVal, rotate);
cpu->shifterCarryOut = (shiftVal >> (rotate - 1)) & 1;
} else {
cpu->shifterOperand = shiftVal;
cpu->shifterCarryOut = ARM_SIGN(shiftVal);
}
} else {
int immediate = (opcode & 0x00000F80) >> 7;
if (immediate) {
cpu->shifterOperand = ROR(cpu->gprs[rm], immediate);
cpu->shifterCarryOut = (cpu->gprs[rm] >> (immediate - 1)) & 1;
} else {
// RRX
cpu->shifterOperand = (cpu->cpsr.c << 31) | (((uint32_t) cpu->gprs[rm]) >> 1);
cpu->shifterCarryOut = cpu->gprs[rm] & 0x00000001;
}
}
}
static inline void _immediate(struct ARMCore* cpu, uint32_t opcode) {
int rotate = (opcode & 0x00000F00) >> 7;
int immediate = opcode & 0x000000FF;
if (!rotate) {
cpu->shifterOperand = immediate;
cpu->shifterCarryOut = cpu->cpsr.c;
} else {
cpu->shifterOperand = ROR(immediate, rotate);
cpu->shifterCarryOut = ARM_SIGN(cpu->shifterOperand);
}
}
// Instruction definitions
// Beware pre-processor antics
ATTRIBUTE_NOINLINE static void _additionS(struct ARMCore* cpu, int32_t m, int32_t n, int32_t d) {
cpu->cpsr.flags = 0;
cpu->cpsr.n = ARM_SIGN(d);
cpu->cpsr.z = !d;
cpu->cpsr.c = ARM_CARRY_FROM(m, n, d);
cpu->cpsr.v = ARM_V_ADDITION(m, n, d);
}
ATTRIBUTE_NOINLINE static void _subtractionS(struct ARMCore* cpu, int32_t m, int32_t n, int32_t d) {
cpu->cpsr.flags = 0;
cpu->cpsr.n = ARM_SIGN(d);
cpu->cpsr.z = !d;
cpu->cpsr.c = ARM_BORROW_FROM(m, n, d);
cpu->cpsr.v = ARM_V_SUBTRACTION(m, n, d);
}
ATTRIBUTE_NOINLINE static void _neutralS(struct ARMCore* cpu, int32_t d) {
cpu->cpsr.n = ARM_SIGN(d);
cpu->cpsr.z = !d; \
cpu->cpsr.c = cpu->shifterCarryOut; \
}
#define ARM_ADDITION_S(M, N, D) \
if (rd == ARM_PC && _ARMModeHasSPSR(cpu->cpsr.priv)) { \
cpu->cpsr = cpu->spsr; \
_ARMReadCPSR(cpu); \
} else { \
_additionS(cpu, M, N, D); \
}
#define ARM_SUBTRACTION_S(M, N, D) \
if (rd == ARM_PC && _ARMModeHasSPSR(cpu->cpsr.priv)) { \
cpu->cpsr = cpu->spsr; \
_ARMReadCPSR(cpu); \
} else { \
_subtractionS(cpu, M, N, D); \
}
#define ARM_SUBTRACTION_CARRY_S(M, N, D, C) \
if (rd == ARM_PC && _ARMModeHasSPSR(cpu->cpsr.priv)) { \
cpu->cpsr = cpu->spsr; \
_ARMReadCPSR(cpu); \
} else { \
cpu->cpsr.n = ARM_SIGN(D); \
cpu->cpsr.z = !(D); \
cpu->cpsr.c = ARM_BORROW_FROM_CARRY(M, N, D, C); \
cpu->cpsr.v = ARM_V_SUBTRACTION(M, N, D); \
}
#define ARM_NEUTRAL_S(M, N, D) \
if (rd == ARM_PC && _ARMModeHasSPSR(cpu->cpsr.priv)) { \
cpu->cpsr = cpu->spsr; \
_ARMReadCPSR(cpu); \
} else { \
_neutralS(cpu, D); \
}
#define ARM_NEUTRAL_HI_S(DLO, DHI) \
cpu->cpsr.n = ARM_SIGN(DHI); \
cpu->cpsr.z = !((DHI) | (DLO));
#define ADDR_MODE_2_I_TEST (opcode & 0x00000F80)
#define ADDR_MODE_2_I ((opcode & 0x00000F80) >> 7)
#define ADDR_MODE_2_ADDRESS (address)
#define ADDR_MODE_2_RN (cpu->gprs[rn])
#define ADDR_MODE_2_RM (cpu->gprs[rm])
#define ADDR_MODE_2_IMMEDIATE (opcode & 0x00000FFF)
#define ADDR_MODE_2_INDEX(U_OP, M) (cpu->gprs[rn] U_OP M)
#define ADDR_MODE_2_WRITEBACK(ADDR) \
cpu->gprs[rn] = ADDR; \
if (UNLIKELY(rn == ARM_PC)) { \
currentCycles += ARMWritePC(cpu); \
}
#define ADDR_MODE_2_WRITEBACK_PRE_STORE(WB)
#define ADDR_MODE_2_WRITEBACK_POST_STORE(WB) WB
#define ADDR_MODE_2_WRITEBACK_PRE_LOAD(WB) WB
#define ADDR_MODE_2_WRITEBACK_POST_LOAD(WB)
#define ADDR_MODE_2_LSL (cpu->gprs[rm] << ADDR_MODE_2_I)
#define ADDR_MODE_2_LSR (ADDR_MODE_2_I_TEST ? ((uint32_t) cpu->gprs[rm]) >> ADDR_MODE_2_I : 0)
#define ADDR_MODE_2_ASR (ADDR_MODE_2_I_TEST ? ((int32_t) cpu->gprs[rm]) >> ADDR_MODE_2_I : ((int32_t) cpu->gprs[rm]) >> 31)
#define ADDR_MODE_2_ROR (ADDR_MODE_2_I_TEST ? ROR(cpu->gprs[rm], ADDR_MODE_2_I) : (cpu->cpsr.c << 31) | (((uint32_t) cpu->gprs[rm]) >> 1))
#define ADDR_MODE_3_ADDRESS ADDR_MODE_2_ADDRESS
#define ADDR_MODE_3_RN ADDR_MODE_2_RN
#define ADDR_MODE_3_RM ADDR_MODE_2_RM
#define ADDR_MODE_3_IMMEDIATE (((opcode & 0x00000F00) >> 4) | (opcode & 0x0000000F))
#define ADDR_MODE_3_INDEX(U_OP, M) ADDR_MODE_2_INDEX(U_OP, M)
#define ADDR_MODE_3_WRITEBACK(ADDR) ADDR_MODE_2_WRITEBACK(ADDR)
#define ADDR_MODE_4_WRITEBACK_LDM \
if (!((1 << rn) & rs)) { \
cpu->gprs[rn] = address; \
}
#define ADDR_MODE_4_WRITEBACK_STM cpu->gprs[rn] = address;
#define ARM_LOAD_POST_BODY \
currentCycles += cpu->memory.activeNonseqCycles32 - cpu->memory.activeSeqCycles32; \
if (rd == ARM_PC) { \
currentCycles += ARMWritePC(cpu); \
}
#define ARM_STORE_POST_BODY \
currentCycles += cpu->memory.activeNonseqCycles32 - cpu->memory.activeSeqCycles32;
#define DEFINE_INSTRUCTION_ARM(NAME, BODY) \
static void _ARMInstruction ## NAME (struct ARMCore* cpu, uint32_t opcode) { \
int currentCycles = ARM_PREFETCH_CYCLES; \
BODY; \
cpu->cycles += currentCycles; \
}
#define DEFINE_ALU_INSTRUCTION_EX_ARM(NAME, S_BODY, SHIFTER, BODY) \
DEFINE_INSTRUCTION_ARM(NAME, \
int rd = (opcode >> 12) & 0xF; \
int rn = (opcode >> 16) & 0xF; \
UNUSED(rn); \
SHIFTER(cpu, opcode); \
BODY; \
S_BODY; \
if (rd == ARM_PC) { \
currentCycles += ARMWritePC(cpu); \
})
#define DEFINE_ALU_INSTRUCTION_ARM(NAME, S_BODY, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _LSL, , _shiftLSL, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## S_LSL, S_BODY, _shiftLSL, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _LSR, , _shiftLSR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## S_LSR, S_BODY, _shiftLSR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _ASR, , _shiftASR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## S_ASR, S_BODY, _shiftASR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _ROR, , _shiftROR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## S_ROR, S_BODY, _shiftROR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## I, , _immediate, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## SI, S_BODY, _immediate, BODY)
#define DEFINE_ALU_INSTRUCTION_S_ONLY_ARM(NAME, S_BODY, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _LSL, S_BODY, _shiftLSL, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _LSR, S_BODY, _shiftLSR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _ASR, S_BODY, _shiftASR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## _ROR, S_BODY, _shiftROR, BODY) \
DEFINE_ALU_INSTRUCTION_EX_ARM(NAME ## I, S_BODY, _immediate, BODY)
#define DEFINE_MULTIPLY_INSTRUCTION_EX_ARM(NAME, BODY, S_BODY) \
DEFINE_INSTRUCTION_ARM(NAME, \
int rd = (opcode >> 16) & 0xF; \
int rs = (opcode >> 8) & 0xF; \
int rm = opcode & 0xF; \
if (rd == ARM_PC) { \
return; \
} \
ARM_WAIT_MUL(cpu->gprs[rs]); \
BODY; \
S_BODY; \
currentCycles += cpu->memory.activeNonseqCycles32 - cpu->memory.activeSeqCycles32)
#define DEFINE_MULTIPLY_INSTRUCTION_2_EX_ARM(NAME, BODY, S_BODY, WAIT) \
DEFINE_INSTRUCTION_ARM(NAME, \
int rd = (opcode >> 12) & 0xF; \
int rdHi = (opcode >> 16) & 0xF; \
int rs = (opcode >> 8) & 0xF; \
int rm = opcode & 0xF; \
if (rdHi == ARM_PC || rd == ARM_PC) { \
return; \
} \
currentCycles += cpu->memory.stall(cpu, WAIT); \
BODY; \
S_BODY; \
currentCycles += cpu->memory.activeNonseqCycles32 - cpu->memory.activeSeqCycles32)
#define DEFINE_MULTIPLY_INSTRUCTION_ARM(NAME, BODY, S_BODY) \
DEFINE_MULTIPLY_INSTRUCTION_EX_ARM(NAME, BODY, ) \
DEFINE_MULTIPLY_INSTRUCTION_EX_ARM(NAME ## S, BODY, S_BODY)
#define DEFINE_MULTIPLY_INSTRUCTION_2_ARM(NAME, BODY, S_BODY, WAIT) \
DEFINE_MULTIPLY_INSTRUCTION_2_EX_ARM(NAME, BODY, , WAIT) \
DEFINE_MULTIPLY_INSTRUCTION_2_EX_ARM(NAME ## S, BODY, S_BODY, WAIT)
#define DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME, ADDRESS, WRITEBACK, LS, BODY) \
DEFINE_INSTRUCTION_ARM(NAME, \
uint32_t address; \
int rn = (opcode >> 16) & 0xF; \
int rd = (opcode >> 12) & 0xF; \
int rm = opcode & 0xF; \
UNUSED(rm); \
address = ADDRESS; \
ADDR_MODE_2_WRITEBACK_PRE_ ## LS (WRITEBACK); \
BODY; \
ADDR_MODE_2_WRITEBACK_POST_ ## LS (WRITEBACK);)
#define DEFINE_LOAD_STORE_INSTRUCTION_SHIFTER_ARM(NAME, SHIFTER, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME, ADDR_MODE_2_RN, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(-, SHIFTER)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## U, ADDR_MODE_2_RN, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(+, SHIFTER)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## P, ADDR_MODE_2_INDEX(-, SHIFTER), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## PW, ADDR_MODE_2_INDEX(-, SHIFTER), ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_ADDRESS), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## PU, ADDR_MODE_2_INDEX(+, SHIFTER), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## PUW, ADDR_MODE_2_INDEX(+, SHIFTER), ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_ADDRESS), LS, BODY)
#define DEFINE_LOAD_STORE_INSTRUCTION_ARM(NAME, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_SHIFTER_ARM(NAME ## _LSL_, ADDR_MODE_2_LSL, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_SHIFTER_ARM(NAME ## _LSR_, ADDR_MODE_2_LSR, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_SHIFTER_ARM(NAME ## _ASR_, ADDR_MODE_2_ASR, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_SHIFTER_ARM(NAME ## _ROR_, ADDR_MODE_2_ROR, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## I, ADDR_MODE_2_RN, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(-, ADDR_MODE_2_IMMEDIATE)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IU, ADDR_MODE_2_RN, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(+, ADDR_MODE_2_IMMEDIATE)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IP, ADDR_MODE_2_INDEX(-, ADDR_MODE_2_IMMEDIATE), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IPW, ADDR_MODE_2_INDEX(-, ADDR_MODE_2_IMMEDIATE), ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_ADDRESS), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IPU, ADDR_MODE_2_INDEX(+, ADDR_MODE_2_IMMEDIATE), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IPUW, ADDR_MODE_2_INDEX(+, ADDR_MODE_2_IMMEDIATE), ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_ADDRESS), LS, BODY) \
#define DEFINE_LOAD_STORE_MODE_3_INSTRUCTION_ARM(NAME, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME, ADDR_MODE_3_RN, ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_INDEX(-, ADDR_MODE_3_RM)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## U, ADDR_MODE_3_RN, ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_INDEX(+, ADDR_MODE_3_RM)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## P, ADDR_MODE_3_INDEX(-, ADDR_MODE_3_RM), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## PW, ADDR_MODE_3_INDEX(-, ADDR_MODE_3_RM), ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_ADDRESS), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## PU, ADDR_MODE_3_INDEX(+, ADDR_MODE_3_RM), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## PUW, ADDR_MODE_3_INDEX(+, ADDR_MODE_3_RM), ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_ADDRESS), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## I, ADDR_MODE_3_RN, ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_INDEX(-, ADDR_MODE_3_IMMEDIATE)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IU, ADDR_MODE_3_RN, ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_INDEX(+, ADDR_MODE_3_IMMEDIATE)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IP, ADDR_MODE_3_INDEX(-, ADDR_MODE_3_IMMEDIATE), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IPW, ADDR_MODE_3_INDEX(-, ADDR_MODE_3_IMMEDIATE), ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_ADDRESS), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IPU, ADDR_MODE_3_INDEX(+, ADDR_MODE_3_IMMEDIATE), , LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IPUW, ADDR_MODE_3_INDEX(+, ADDR_MODE_3_IMMEDIATE), ADDR_MODE_3_WRITEBACK(ADDR_MODE_3_ADDRESS), LS, BODY) \
#define DEFINE_LOAD_STORE_T_INSTRUCTION_SHIFTER_ARM(NAME, SHIFTER, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME, SHIFTER, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(-, ADDR_MODE_2_RM)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## U, SHIFTER, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(+, ADDR_MODE_2_RM)), LS, BODY) \
#define DEFINE_LOAD_STORE_T_INSTRUCTION_ARM(NAME, LS, BODY) \
DEFINE_LOAD_STORE_T_INSTRUCTION_SHIFTER_ARM(NAME ## _LSL_, ADDR_MODE_2_LSL, LS, BODY) \
DEFINE_LOAD_STORE_T_INSTRUCTION_SHIFTER_ARM(NAME ## _LSR_, ADDR_MODE_2_LSR, LS, BODY) \
DEFINE_LOAD_STORE_T_INSTRUCTION_SHIFTER_ARM(NAME ## _ASR_, ADDR_MODE_2_ASR, LS, BODY) \
DEFINE_LOAD_STORE_T_INSTRUCTION_SHIFTER_ARM(NAME ## _ROR_, ADDR_MODE_2_ROR, LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## I, ADDR_MODE_2_RN, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(-, ADDR_MODE_2_IMMEDIATE)), LS, BODY) \
DEFINE_LOAD_STORE_INSTRUCTION_EX_ARM(NAME ## IU, ADDR_MODE_2_RN, ADDR_MODE_2_WRITEBACK(ADDR_MODE_2_INDEX(+, ADDR_MODE_2_IMMEDIATE)), LS, BODY) \
#define ARM_MS_PRE(IS_LOAD) \
enum PrivilegeMode privilegeMode = cpu->privilegeMode; \
if (!(opcode & 0x8000) || !IS_LOAD) ARMSetPrivilegeMode(cpu, MODE_USER);
#define ARM_MS_POST(IS_LOAD) \
ARMSetPrivilegeMode(cpu, privilegeMode); \
if (IS_LOAD && (opcode & 0x8000)) { \
cpu->cpsr.packed = cpu->spsr.packed;\
ARMSetPrivilegeMode(cpu, cpu->cpsr.priv);\
}
#define DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME, LS, WRITEBACK, S_PRE, S_POST, DIRECTION, POST_BODY) \
DEFINE_INSTRUCTION_ARM(NAME, \
int rn = (opcode >> 16) & 0xF; \
int rs = opcode & 0x0000FFFF; \
uint32_t address = cpu->gprs[rn]; \
S_PRE; \
address = cpu->memory. LS ## Multiple(cpu, address, rs, LSM_ ## DIRECTION, &currentCycles); \
POST_BODY; \
WRITEBACK; \
S_POST; \
)
#define DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_ARM(NAME, LS, IS_LOAD, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## DA, LS, , , , DA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## DAW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, , , DA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## DB, LS, , , , DB, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## DBW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, , , DB, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## IA, LS, , , , IA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## IAW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, , , IA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## IB, LS, , , , IB, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## IBW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, , , IB, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SDA, LS, , ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), DA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SDAW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), DA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SDB, LS, , ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), DB, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SDBW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), DB, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SIA, LS, , ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), IA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SIAW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), IA, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SIB, LS, , ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), IB, POST_BODY) \
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_EX_ARM(NAME ## SIBW, LS, ADDR_MODE_4_WRITEBACK_ ## NAME, ARM_MS_PRE(IS_LOAD), ARM_MS_POST(IS_LOAD), IB, POST_BODY)
// Begin ALU definitions
DEFINE_ALU_INSTRUCTION_ARM(ADD, ARM_ADDITION_S(n, cpu->shifterOperand, cpu->gprs[rd]),
int32_t n = cpu->gprs[rn];
cpu->gprs[rd] = n + cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_ARM(ADC, ARM_ADDITION_S(n, cpu->shifterOperand, cpu->gprs[rd]),
int32_t n = cpu->gprs[rn];
cpu->gprs[rd] = n + cpu->shifterOperand + cpu->cpsr.c;)
DEFINE_ALU_INSTRUCTION_ARM(AND, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, cpu->gprs[rd]),
cpu->gprs[rd] = cpu->gprs[rn] & cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_ARM(BIC, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, cpu->gprs[rd]),
cpu->gprs[rd] = cpu->gprs[rn] & ~cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_S_ONLY_ARM(CMN, ARM_ADDITION_S(cpu->gprs[rn], cpu->shifterOperand, aluOut),
int32_t aluOut = cpu->gprs[rn] + cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_S_ONLY_ARM(CMP, ARM_SUBTRACTION_S(cpu->gprs[rn], cpu->shifterOperand, aluOut),
int32_t aluOut = cpu->gprs[rn] - cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_ARM(EOR, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, cpu->gprs[rd]),
cpu->gprs[rd] = cpu->gprs[rn] ^ cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_ARM(MOV, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, cpu->gprs[rd]),
cpu->gprs[rd] = cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_ARM(MVN, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, cpu->gprs[rd]),
cpu->gprs[rd] = ~cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_ARM(ORR, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, cpu->gprs[rd]),
cpu->gprs[rd] = cpu->gprs[rn] | cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_ARM(RSB, ARM_SUBTRACTION_S(cpu->shifterOperand, n, cpu->gprs[rd]),
int32_t n = cpu->gprs[rn];
cpu->gprs[rd] = cpu->shifterOperand - n;)
DEFINE_ALU_INSTRUCTION_ARM(RSC, ARM_SUBTRACTION_CARRY_S(cpu->shifterOperand, n, cpu->gprs[rd], !cpu->cpsr.c),
int32_t n = cpu->gprs[rn];
cpu->gprs[rd] = cpu->shifterOperand - n - !cpu->cpsr.c;)
DEFINE_ALU_INSTRUCTION_ARM(SBC, ARM_SUBTRACTION_CARRY_S(n, cpu->shifterOperand, cpu->gprs[rd], !cpu->cpsr.c),
int32_t n = cpu->gprs[rn];
cpu->gprs[rd] = n - cpu->shifterOperand - !cpu->cpsr.c;)
DEFINE_ALU_INSTRUCTION_ARM(SUB, ARM_SUBTRACTION_S(n, cpu->shifterOperand, cpu->gprs[rd]),
int32_t n = cpu->gprs[rn];
cpu->gprs[rd] = n - cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_S_ONLY_ARM(TEQ, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, aluOut),
int32_t aluOut = cpu->gprs[rn] ^ cpu->shifterOperand;)
DEFINE_ALU_INSTRUCTION_S_ONLY_ARM(TST, ARM_NEUTRAL_S(cpu->gprs[rn], cpu->shifterOperand, aluOut),
int32_t aluOut = cpu->gprs[rn] & cpu->shifterOperand;)
// End ALU definitions
// Begin multiply definitions
DEFINE_MULTIPLY_INSTRUCTION_2_ARM(MLA, cpu->gprs[rdHi] = cpu->gprs[rm] * cpu->gprs[rs] + cpu->gprs[rd], ARM_NEUTRAL_S(, , cpu->gprs[rdHi]), 2)
DEFINE_MULTIPLY_INSTRUCTION_ARM(MUL, cpu->gprs[rd] = cpu->gprs[rm] * cpu->gprs[rs], ARM_NEUTRAL_S(cpu->gprs[rm], cpu->gprs[rs], cpu->gprs[rd]))
DEFINE_MULTIPLY_INSTRUCTION_2_ARM(SMLAL,
int64_t d = ((int64_t) cpu->gprs[rm]) * ((int64_t) cpu->gprs[rs]);
int32_t dm = cpu->gprs[rd];
int32_t dn = d;
cpu->gprs[rd] = dm + dn;
cpu->gprs[rdHi] = cpu->gprs[rdHi] + (d >> 32) + ARM_CARRY_FROM(dm, dn, cpu->gprs[rd]);,
ARM_NEUTRAL_HI_S(cpu->gprs[rd], cpu->gprs[rdHi]), 3)
DEFINE_MULTIPLY_INSTRUCTION_2_ARM(SMULL,
int64_t d = ((int64_t) cpu->gprs[rm]) * ((int64_t) cpu->gprs[rs]);
cpu->gprs[rd] = d;
cpu->gprs[rdHi] = d >> 32;,
ARM_NEUTRAL_HI_S(cpu->gprs[rd], cpu->gprs[rdHi]), 2)
DEFINE_MULTIPLY_INSTRUCTION_2_ARM(UMLAL,
uint64_t d = ARM_UXT_64(cpu->gprs[rm]) * ARM_UXT_64(cpu->gprs[rs]);
int32_t dm = cpu->gprs[rd];
int32_t dn = d;
cpu->gprs[rd] = dm + dn;
cpu->gprs[rdHi] = cpu->gprs[rdHi] + (d >> 32) + ARM_CARRY_FROM(dm, dn, cpu->gprs[rd]);,
ARM_NEUTRAL_HI_S(cpu->gprs[rd], cpu->gprs[rdHi]), 3)
DEFINE_MULTIPLY_INSTRUCTION_2_ARM(UMULL,
uint64_t d = ARM_UXT_64(cpu->gprs[rm]) * ARM_UXT_64(cpu->gprs[rs]);
cpu->gprs[rd] = d;
cpu->gprs[rdHi] = d >> 32;,
ARM_NEUTRAL_HI_S(cpu->gprs[rd], cpu->gprs[rdHi]), 2)
// End multiply definitions
// Begin load/store definitions
DEFINE_LOAD_STORE_INSTRUCTION_ARM(LDR, LOAD, cpu->gprs[rd] = cpu->memory.load32(cpu, address, &currentCycles); ARM_LOAD_POST_BODY;)
DEFINE_LOAD_STORE_INSTRUCTION_ARM(LDRB, LOAD, cpu->gprs[rd] = cpu->memory.load8(cpu, address, &currentCycles); ARM_LOAD_POST_BODY;)
DEFINE_LOAD_STORE_MODE_3_INSTRUCTION_ARM(LDRH, LOAD, cpu->gprs[rd] = cpu->memory.load16(cpu, address, &currentCycles); ARM_LOAD_POST_BODY;)
DEFINE_LOAD_STORE_MODE_3_INSTRUCTION_ARM(LDRSB, LOAD, cpu->gprs[rd] = ARM_SXT_8(cpu->memory.load8(cpu, address, &currentCycles)); ARM_LOAD_POST_BODY;)
DEFINE_LOAD_STORE_MODE_3_INSTRUCTION_ARM(LDRSH, LOAD, cpu->gprs[rd] = address & 1 ? ARM_SXT_8(cpu->memory.load16(cpu, address, &currentCycles)) : ARM_SXT_16(cpu->memory.load16(cpu, address, &currentCycles)); ARM_LOAD_POST_BODY;)
DEFINE_LOAD_STORE_INSTRUCTION_ARM(STR, STORE, cpu->memory.store32(cpu, address, cpu->gprs[rd], &currentCycles); ARM_STORE_POST_BODY;)
DEFINE_LOAD_STORE_INSTRUCTION_ARM(STRB, STORE, cpu->memory.store8(cpu, address, cpu->gprs[rd], &currentCycles); ARM_STORE_POST_BODY;)
DEFINE_LOAD_STORE_MODE_3_INSTRUCTION_ARM(STRH, STORE, cpu->memory.store16(cpu, address, cpu->gprs[rd], &currentCycles); ARM_STORE_POST_BODY;)
DEFINE_LOAD_STORE_T_INSTRUCTION_ARM(LDRBT, LOAD,
enum PrivilegeMode priv = cpu->privilegeMode;
ARMSetPrivilegeMode(cpu, MODE_USER);
int32_t r = cpu->memory.load8(cpu, address, &currentCycles);
ARMSetPrivilegeMode(cpu, priv);
cpu->gprs[rd] = r;
ARM_LOAD_POST_BODY;)
DEFINE_LOAD_STORE_T_INSTRUCTION_ARM(LDRT, LOAD,
enum PrivilegeMode priv = cpu->privilegeMode;
ARMSetPrivilegeMode(cpu, MODE_USER);
int32_t r = cpu->memory.load32(cpu, address, &currentCycles);
ARMSetPrivilegeMode(cpu, priv);
cpu->gprs[rd] = r;
ARM_LOAD_POST_BODY;)
DEFINE_LOAD_STORE_T_INSTRUCTION_ARM(STRBT, STORE,
enum PrivilegeMode priv = cpu->privilegeMode;
int32_t r = cpu->gprs[rd];
ARMSetPrivilegeMode(cpu, MODE_USER);
cpu->memory.store8(cpu, address, r, &currentCycles);
ARMSetPrivilegeMode(cpu, priv);
ARM_STORE_POST_BODY;)
DEFINE_LOAD_STORE_T_INSTRUCTION_ARM(STRT, STORE,
enum PrivilegeMode priv = cpu->privilegeMode;
int32_t r = cpu->gprs[rd];
ARMSetPrivilegeMode(cpu, MODE_USER);
cpu->memory.store32(cpu, address, r, &currentCycles);
ARMSetPrivilegeMode(cpu, priv);
ARM_STORE_POST_BODY;)
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_ARM(LDM,
load, true,
currentCycles += cpu->memory.activeNonseqCycles32 - cpu->memory.activeSeqCycles32;
if ((rs & 0x8000) || !rs) {
currentCycles += ARMWritePC(cpu);
})
DEFINE_LOAD_STORE_MULTIPLE_INSTRUCTION_ARM(STM,
store, false,
ARM_STORE_POST_BODY;)
DEFINE_INSTRUCTION_ARM(SWP,
int rm = opcode & 0xF;
int rd = (opcode >> 12) & 0xF;
int rn = (opcode >> 16) & 0xF;
int32_t d = cpu->memory.load32(cpu, cpu->gprs[rn], &currentCycles);
cpu->memory.store32(cpu, cpu->gprs[rn], cpu->gprs[rm], &currentCycles);
cpu->gprs[rd] = d;)
DEFINE_INSTRUCTION_ARM(SWPB,
int rm = opcode & 0xF;
int rd = (opcode >> 12) & 0xF;
int rn = (opcode >> 16) & 0xF;
int32_t d = cpu->memory.load8(cpu, cpu->gprs[rn], &currentCycles);
cpu->memory.store8(cpu, cpu->gprs[rn], cpu->gprs[rm], &currentCycles);
cpu->gprs[rd] = d;)
// End load/store definitions
// Begin branch definitions
DEFINE_INSTRUCTION_ARM(B,
int32_t offset = opcode << 8;
offset >>= 6;
cpu->gprs[ARM_PC] += offset;
currentCycles += ARMWritePC(cpu);)
DEFINE_INSTRUCTION_ARM(BL,
int32_t immediate = (opcode & 0x00FFFFFF) << 8;
cpu->gprs[ARM_LR] = cpu->gprs[ARM_PC] - 4;
cpu->gprs[ARM_PC] += immediate >> 6;
currentCycles += ARMWritePC(cpu);)
DEFINE_INSTRUCTION_ARM(BX,
int rm = opcode & 0x0000000F;
cpu->gprs[ARM_PC] = cpu->gprs[rm] & 0xFFFFFFFE;
currentCycles += ARMWritePC(cpu);
)
// End branch definitions
// Begin coprocessor definitions
DEFINE_INSTRUCTION_ARM(CDP, ARM_STUB)
DEFINE_INSTRUCTION_ARM(LDC, ARM_STUB)
DEFINE_INSTRUCTION_ARM(STC, ARM_STUB)
DEFINE_INSTRUCTION_ARM(MCR, ARM_STUB)
DEFINE_INSTRUCTION_ARM(MRC, ARM_STUB)
// Begin miscellaneous definitions
DEFINE_INSTRUCTION_ARM(BKPT, cpu->irqh.bkpt32(cpu, ((opcode >> 4) & 0xFFF0) | (opcode & 0xF))); // Not strictly in ARMv4T, but here for convenience
DEFINE_INSTRUCTION_ARM(ILL, ARM_ILL) // Illegal opcode
DEFINE_INSTRUCTION_ARM(MSR,
int c = opcode & 0x00010000;
int f = opcode & 0x00080000;
int32_t operand = cpu->gprs[opcode & 0x0000000F];
int32_t mask = (c ? 0x000000FF : 0) | (f ? 0xFF000000 : 0);
if (mask & PSR_USER_MASK) {
cpu->cpsr.packed = (cpu->cpsr.packed & ~PSR_USER_MASK) | (operand & PSR_USER_MASK);
}
if (mask & PSR_STATE_MASK) {
cpu->cpsr.packed = (cpu->cpsr.packed & ~PSR_STATE_MASK) | (operand & PSR_STATE_MASK);
}
if (cpu->privilegeMode != MODE_USER && (mask & PSR_PRIV_MASK)) {
ARMSetPrivilegeMode(cpu, (enum PrivilegeMode) ((operand & 0x0000000F) | 0x00000010));
cpu->cpsr.packed = (cpu->cpsr.packed & ~PSR_PRIV_MASK) | (operand & PSR_PRIV_MASK);
}
_ARMReadCPSR(cpu);
// LOAD_32(cpu->prefetch[0], (cpu->gprs[ARM_PC] - 4) & cpu->memory.activeMask, cpu->memory.activeRegion);
// LOAD_32(cpu->prefetch[1], cpu->gprs[ARM_PC] & cpu->memory.activeMask, cpu->memory.activeRegion);
cpu->prefetch[0] = cpu->memory.load32(cpu, cpu->gprs[ARM_PC] - 4, NULL);
cpu->prefetch[1] = cpu->memory.load32(cpu, cpu->gprs[ARM_PC], NULL);
)
DEFINE_INSTRUCTION_ARM(MSRR,
int c = opcode & 0x00010000;
int f = opcode & 0x00080000;
int32_t operand = cpu->gprs[opcode & 0x0000000F];
int32_t mask = (c ? 0x000000FF : 0) | (f ? 0xFF000000 : 0);
mask &= PSR_USER_MASK | PSR_PRIV_MASK | PSR_STATE_MASK;
cpu->spsr.packed = (cpu->spsr.packed & ~mask) | (operand & mask) | 0x00000010;)
DEFINE_INSTRUCTION_ARM(MRS, \
int rd = (opcode >> 12) & 0xF; \
cpu->gprs[rd] = cpu->cpsr.packed;)
DEFINE_INSTRUCTION_ARM(MRSR, \
int rd = (opcode >> 12) & 0xF; \
cpu->gprs[rd] = cpu->spsr.packed;)
DEFINE_INSTRUCTION_ARM(MSRI,
int c = opcode & 0x00010000;
int f = opcode & 0x00080000;
int rotate = (opcode & 0x00000F00) >> 7;
int32_t operand = ROR(opcode & 0x000000FF, rotate);
int32_t mask = (c ? 0x000000FF : 0) | (f ? 0xFF000000 : 0);
if (mask & PSR_USER_MASK) {
cpu->cpsr.packed = (cpu->cpsr.packed & ~PSR_USER_MASK) | (operand & PSR_USER_MASK);
}
if (mask & PSR_STATE_MASK) {
cpu->cpsr.packed = (cpu->cpsr.packed & ~PSR_STATE_MASK) | (operand & PSR_STATE_MASK);
}
if (cpu->privilegeMode != MODE_USER && (mask & PSR_PRIV_MASK)) {
ARMSetPrivilegeMode(cpu, (enum PrivilegeMode) ((operand & 0x0000000F) | 0x00000010));
cpu->cpsr.packed = (cpu->cpsr.packed & ~PSR_PRIV_MASK) | (operand & PSR_PRIV_MASK);
}
_ARMReadCPSR(cpu);
// LOAD_32(cpu->prefetch[0], (cpu->gprs[ARM_PC] - 4) & cpu->memory.activeMask, cpu->memory.activeRegion);
// LOAD_32(cpu->prefetch[1], cpu->gprs[ARM_PC] & cpu->memory.activeMask, cpu->memory.activeRegion);
cpu->prefetch[0] = cpu->memory.load32(cpu, cpu->gprs[ARM_PC] - 4, NULL);
cpu->prefetch[1] = cpu->memory.load32(cpu, cpu->gprs[ARM_PC], NULL);
)
DEFINE_INSTRUCTION_ARM(MSRRI,
int c = opcode & 0x00010000;
int f = opcode & 0x00080000;
int rotate = (opcode & 0x00000F00) >> 7;
int32_t operand = ROR(opcode & 0x000000FF, rotate);
int32_t mask = (c ? 0x000000FF : 0) | (f ? 0xFF000000 : 0);
mask &= PSR_USER_MASK | PSR_PRIV_MASK | PSR_STATE_MASK;
cpu->spsr.packed = (cpu->spsr.packed & ~mask) | (operand & mask) | 0x00000010;)
DEFINE_INSTRUCTION_ARM(SWI, cpu->irqh.swi32(cpu, opcode & 0xFFFFFF))
const ARMInstruction _armTable[0x1000] = {
DECLARE_ARM_EMITTER_BLOCK(_ARMInstruction)
};