WindEmu/WindCore/arm710t.cpp

1059 lines
29 KiB
C++
Raw Normal View History

#include "arm710t.h"
#include "common.h"
// this will need changing if this code ever compiles on big-endian procs
inline uint32_t read32LE(uint8_t *p) {
return *((uint32_t *)p);
}
inline void write32LE(uint8_t *p, uint32_t v) {
*((uint32_t *)p) = v;
}
void ARM710T::switchBank(BankIndex newBank) {
if (newBank != bank) {
// R13 and R14 need saving/loading for all banks
allModesBankedRegisters[bank][0] = GPRs[13];
allModesBankedRegisters[bank][1] = GPRs[14];
GPRs[13] = allModesBankedRegisters[newBank][0];
GPRs[14] = allModesBankedRegisters[newBank][1];
// R8 to R12 are only banked in FIQ mode
auto oldBankR8to12 = (bank == FiqBank) ? 1 : 0;
auto newBankR8to12 = (newBank == FiqBank) ? 1 : 0;
if (oldBankR8to12 != newBankR8to12) {
// swap these sets around
for (int i = 0; i < 5; i++)
fiqBankedRegisters[oldBankR8to12][i] = GPRs[8 + i];
for (int i = 0; i < 5; i++)
GPRs[8 + i] = fiqBankedRegisters[newBankR8to12][i];
}
bank = newBank;
}
}
void ARM710T::switchMode(Mode newMode) {
auto oldMode = currentMode();
if (newMode != oldMode) {
switchBank(modeToBank[newMode & 0xF]);
CPSR &= ~CPSR_ModeMask;
CPSR |= newMode;
}
}
void ARM710T::raiseException(Mode mode, uint32_t savedPC, uint32_t newPC) {
auto bankIndex = modeToBank[mode & 0xF];
SPSRs[bankIndex] = CPSR;
switchMode(mode);
prefetchCount = 0;
GPRs[14] = savedPC;
GPRs[15] = newPC;
}
void ARM710T::requestFIQ() {
raiseException(FIQ32, GPRs[15], 0x1C);
CPSR |= CPSR_FIQDisable;
CPSR |= CPSR_IRQDisable;
}
void ARM710T::requestIRQ() {
raiseException(FIQ32, GPRs[15], 0x18);
CPSR |= CPSR_IRQDisable;
}
void ARM710T::reset() {
clearCache();
raiseException(Supervisor32, 0, 0);
}
uint32_t ARM710T::tick() {
// pop an instruction off the end of the pipeline
bool haveInsn = false;
uint32_t insn;
MMUFault insnFault;
if (prefetchCount == 2) {
haveInsn = true;
insn = prefetch[1];
insnFault = prefetchFaults[1];
}
// move the instruction we fetched last tick once along
if (prefetchCount >= 1) {
prefetch[1] = prefetch[0];
prefetchFaults[1] = prefetchFaults[0];
}
// fetch a new instruction
auto newInsn = readVirtual(GPRs[15], V32);
if (GPRs[15] < 0x10 || GPRs[15] > 0xA0000000) {
log("HACK HACK HACK 2");
log("PC=%08x LR=%08x", GPRs[15], GPRs[14]);
}
// if (GPRs[15] == 0x50100000) {
// log("HACK HACK HACK");
// log("LR=%08x", GPRs[14]);
// }
GPRs[15] += 4;
prefetch[0] = newInsn.first.value_or(0);
prefetchFaults[0] = newInsn.second;
if (prefetchCount < 2)
prefetchCount++;
// now deal with the one we popped
uint32_t clocks = 1;
if (haveInsn) {
if (insnFault != NoFault) {
// Raise a prefetch error
// These do not set FSR or FAR
log("prefetch error! %08x", insnFault >> MMUFaultAddressShift);
raiseException(Abort32, GPRs[15] - 8, 0xC);
} else {
clocks += executeInstruction(insn);
}
}
if (faultTriggeredThisCycle) {
// data abort time!
faultTriggeredThisCycle = false;
raiseException(Abort32, GPRs[15] - 4, 0x10);
}
return clocks;
}
static inline uint32_t extract(uint32_t value, uint32_t hiBit, uint32_t loBit) {
return (value >> loBit) & ((1 << (hiBit - loBit + 1)) - 1);
// return (value >> (32 - offset - length)) & ((1 << length) - 1);
}
static inline bool extract1(uint32_t value, uint32_t bit) {
return (value >> bit) & 1;
}
uint32_t ARM710T::executeInstruction(uint32_t i) {
uint32_t cycles = 1;
2019-12-22 13:45:46 +00:00
// log("executing insn %08x @ %08x", i, GPRs[15] - 0xC);
// a big old dispatch thing here
// but first, conditions!
if (!checkCondition(extract(i, 31, 28)))
return cycles;
if ((i & 0x0F000000) == 0x0F000000)
raiseException(Supervisor32, GPRs[15] - 8, 0x08);
else if ((i & 0x0F000F10) == 0x0E000F10)
cycles += execCP15RegisterTransfer(extract(i,23,21), extract1(i,20), extract(i,19,16), extract(i,15,12), extract(i,7,5), extract(i,3,0));
else if ((i & 0x0E000000) == 0x0A000000)
cycles += execBranch(extract1(i,24), extract(i,23,0));
else if ((i & 0x0E000000) == 0x08000000)
cycles += execBlockDataTransfer(extract(i,24,20), extract(i,19,16), extract(i,15,0));
else if ((i & 0x0C000000) == 0x04000000)
cycles += execSingleDataTransfer(extract(i,25,20), extract(i,19,16), extract(i,15,12), extract(i,11,0));
else if ((i & 0x0FB00FF0) == 0x01000090)
cycles += execSingleDataSwap(extract1(i,22), extract(i,19,16), extract(i,15,12), extract(i,3,0));
else if ((i & 0x0F8000F0) == 0x00000090)
cycles += execMultiply(extract(i,21,20), extract(i,19,16), extract(i,15,12), extract(i,11,8), extract(i,3,0));
else if ((i & 0x0C000000) == 0x00000000)
cycles += execDataProcessing(extract1(i,25), extract(i,24,21), extract1(i,20), extract(i,19,16), extract(i,15,12), extract(i,11,0));
else
raiseException(Undefined32, GPRs[15] - 8, 0x04);
return cycles;
}
uint32_t ARM710T::execDataProcessing(bool I, uint32_t Opcode, bool S, uint32_t Rn, uint32_t Rd, uint32_t Operand2)
{
uint32_t cycles = 0; // TODO increment me semi-accurately
bool shifterCarryOutput;
// compute our Op1 (may be unnecessary but that's ok)
uint32_t op1 = GPRs[Rn];
// compute our Op2
uint32_t op2;
if (!I) {
// REGISTER
uint32_t Rm = extract(Operand2, 3, 0);
op2 = GPRs[Rm];
uint8_t shiftBy;
// this is the real painful one, honestly
if (extract(Operand2, 4, 4)) {
// Shift by Register
uint32_t Rs = extract(Operand2, 11, 8);
shiftBy = GPRs[Rs] & 0xFF;
} else {
// Shift by Immediate
shiftBy = extract(Operand2, 11, 7);
if (Rn == 15) // if PC is fetched...
op1 -= 4; // compensate for prefetching
if (Rm == 15)
op2 -= 4;
}
2019-12-22 13:45:46 +00:00
if (extract(Operand2, 4, 4) && (shiftBy == 0)) {
// register shift by 0 never does anything
shifterCarryOutput = flagC();
} else {
switch (extract(Operand2, 6, 5)) {
case 0: // Logical Left (LSL)
if (shiftBy == 0) {
shifterCarryOutput = flagC();
// no change to op2!
} else if (shiftBy <= 31) {
shifterCarryOutput = extract1(op2, 31 - shiftBy);
op2 <<= shiftBy;
} else if (shiftBy == 32) {
shifterCarryOutput = extract1(op2, 0);
op2 = 0;
} else /*if (shiftBy >= 33)*/ {
shifterCarryOutput = false;
op2 = 0;
}
break;
case 1: // Logical Right (LSR)
if (shiftBy == 0 || shiftBy == 32) {
shifterCarryOutput = extract1(op2, 31);
2019-12-22 13:45:46 +00:00
op2 = 0;
} else if (shiftBy <= 31) {
shifterCarryOutput = extract1(op2, shiftBy - 1);
2019-12-22 13:45:46 +00:00
op2 >>= shiftBy;
} else /*if (shiftBy >= 33)*/ {
shifterCarryOutput = false;
op2 = 0;
}
break;
case 2: // Arithmetic Right (ASR)
if (shiftBy == 0 || shiftBy >= 32) {
shifterCarryOutput = extract1(op2, 31);
op2 = (int32_t)op2 >> 31;
} else /*if (shiftBy <= 31)*/ {
shifterCarryOutput = extract1(op2, shiftBy - 1);
op2 = (int32_t)op2 >> shiftBy;
}
break;
case 3: // Rotate Right (ROR)
if (shiftBy == 0) { // treated as RRX
shifterCarryOutput = op2 & 1;
op2 >>= 1;
op2 |= flagC() ? 0x80000000 : 0;
} else {
shiftBy %= 32;
if (shiftBy == 0) { // like 32
shifterCarryOutput = extract1(op2, 31);
// no change to op2
} else {
shifterCarryOutput = extract1(op2, shiftBy - 1);
op2 = ROR(op2, shiftBy);
}
}
2019-12-22 13:45:46 +00:00
break;
}
}
} else {
// IMMEDIATE
if (Rn == 15) // if PC is fetched...
op1 -= 4; // compensate for prefetching
uint32_t Rotate = extract(Operand2, 11, 8);
uint32_t Imm = extract(Operand2, 7, 0);
op2 = ROR(Imm, Rotate * 2);
shifterCarryOutput = flagC(); // correct? unsure...
}
// we have our operands, what next
uint64_t result = 0;
uint32_t flags = 0;
#define LOGICAL_OP(v) \
result = v; \
flags |= (result & 0xFFFFFFFF) ? 0 : CPSR_Z; \
flags |= (result & 0x80000000) ? CPSR_N : 0; \
flags |= shifterCarryOutput ? CPSR_C : 0; \
flags |= (CPSR & CPSR_V);
#define ADD_OP(a, b, c) \
2019-12-22 13:45:46 +00:00
result = (uint64_t)(a) + (uint64_t)(b) + (uint64_t)(c); \
flags |= (result & 0xFFFFFFFF) ? 0 : CPSR_Z; \
flags |= (result & 0x80000000) ? CPSR_N : 0; \
flags |= (result & 0x100000000) ? CPSR_C : 0; \
flags |= ((((a) & 0x80000000) == ((b) & 0x80000000)) && (((a) & 0x80000000) != (result & 0x80000000))) ? CPSR_V : 0;
#define SUB_OP(a, b, c) ADD_OP(a, ~b, c)
switch (Opcode) {
case 0: LOGICAL_OP(op1 & op2); break; // AND
case 1: LOGICAL_OP(op1 ^ op2); break; // EOR
case 2: SUB_OP(op1, op2, 1); break; // SUB
case 3: SUB_OP(op2, op1, 1); break; // RSB
case 4: ADD_OP(op1, op2, 0); break; // ADD
case 5: ADD_OP(op1, op2, flagC()); break; // ADC
case 6: SUB_OP(op1, op2, flagC()); break; // SBC
case 7: SUB_OP(op2, op1, flagC()); break; // RSC
case 8: LOGICAL_OP(op1 & op2); break; // TST
case 9: LOGICAL_OP(op1 ^ op2); break; // TEQ
case 0xA: SUB_OP(op1, op2, 1); break; // CMP
case 0xB: ADD_OP(op1, op2, 0); break; // CMN
case 0xC: LOGICAL_OP(op1 | op2); break; // ORR
case 0xD: LOGICAL_OP(op2); break; // MOV
case 0xE: LOGICAL_OP(op1 & ~op2); break; // BIC
case 0xF: LOGICAL_OP(~op2); break; // MVN
}
if (Opcode >= 8 && Opcode <= 0xB) {
// Output-less opcodes: special behaviour
if (S) {
CPSR = (CPSR & ~CPSR_FlagMask) | flags;
2019-12-22 13:45:46 +00:00
// log("CPSR setflags=%08x results in CPSR=%08x", flags, CPSR);
} else if (Opcode == 8) {
// MRS, CPSR -> Reg
GPRs[Rd] = CPSR;
// log("r%d <- CPSR(%08x)", Rd, GPRs[Rd]);
} else if (Opcode == 9) {
// MSR, Reg -> CPSR
bool canChangeMode = extract1(Rn, 0);
if (canChangeMode && isPrivileged()) {
auto newCPSR = GPRs[extract(Operand2, 3, 0)];
switchMode(modeFromCPSR(newCPSR));
CPSR = newCPSR;
// log("CPSR change privileged: %08x", CPSR);
} else {
// for the flag-only version, immediates are allowed
// so we just re-use what was calculated earlier...
auto newFlag = I ? op2 : GPRs[extract(Operand2, 3, 0)];
CPSR &= ~CPSR_FlagMask;
CPSR |= (newFlag & CPSR_FlagMask);
// log("CPSR change unprivileged: new=%08x result=%08x", newFlag, CPSR);
}
} else if (Opcode == 0xA) {
// MRS, SPSR -> Reg
2019-12-22 13:45:46 +00:00
if (isPrivileged()) {
GPRs[Rd] = SPSRs[currentBank()];
// log("r%d <- SPSR(%08x)", Rd, GPRs[Rd]);
2019-12-22 13:45:46 +00:00
}
} else /*if (Opcode == 0xB)*/ {
bool canChangeMode = extract1(Rn, 0);
if (isPrivileged()) {
if (canChangeMode) {
SPSRs[currentBank()] = GPRs[extract(Operand2, 3, 0)];
// log("SPSR change privileged: %08x", SPSRs[currentBank()]);
} else {
// same hat
auto newFlag = I ? op2 : GPRs[extract(Operand2, 3, 0)];
SPSRs[currentBank()] &= ~CPSR_FlagMask;
SPSRs[currentBank()] |= (newFlag & CPSR_FlagMask);
// log("SPSR change unprivileged: new=%08x result=%08x", newFlag, SPSRs[currentBank()]);
}
}
}
} else {
GPRs[Rd] = result & 0xFFFFFFFF;
if (Rd == 15) {
// Writing to PC
// Special things occur here!
prefetchCount = 0;
if (S && isPrivileged()) {
// We SHOULD be privileged
// (Raise an error otherwise...?)
auto saved = SPSRs[currentBank()];
switchMode(modeFromCPSR(saved));
CPSR = saved;
// log("dataproc restore CPSR: %08x", CPSR);
}
} else if (S) {
CPSR = (CPSR & ~CPSR_FlagMask) | flags;
2019-12-22 13:45:46 +00:00
// log("dataproc flag change: flags=%08x CPSR=%08x", flags, CPSR);
}
}
return cycles;
}
uint32_t ARM710T::execMultiply(uint32_t AS, uint32_t Rd, uint32_t Rn, uint32_t Rs, uint32_t Rm)
{
// no need for R15 fuckery
// datasheet says it's not allowed here
if (AS & 2)
GPRs[Rd] = GPRs[Rm] * GPRs[Rs] + GPRs[Rn];
else
GPRs[Rd] = GPRs[Rm] * GPRs[Rs];
if (AS & 1) {
CPSR &= ~(CPSR_N | CPSR_Z);
CPSR |= GPRs[Rd] ? 0 : CPSR_Z;
CPSR |= (GPRs[Rd] & 0x80000000) ? CPSR_N : 0;
}
return 0;
}
uint32_t ARM710T::execSingleDataSwap(bool B, uint32_t Rn, uint32_t Rd, uint32_t Rm)
{
auto valueSize = B ? V8 : V32;
auto readResult = readVirtual(GPRs[Rn], valueSize);
auto fault = readResult.second;
if (fault == NoFault) {
fault = writeVirtual(GPRs[Rm], GPRs[Rn], valueSize);
if (fault == NoFault)
GPRs[Rd] = readResult.first.value();
}
if (fault != NoFault)
reportFault(fault);
return 1;
}
uint32_t ARM710T::execSingleDataTransfer(uint32_t IPUBWL, uint32_t Rn, uint32_t Rd, uint32_t offset)
{
bool load = extract1(IPUBWL, 0);
bool writeback = extract1(IPUBWL, 1);
auto valueSize = extract1(IPUBWL, 2) ? V8 : V32;
bool up = extract1(IPUBWL, 3);
bool preIndex = extract1(IPUBWL, 4);
2019-12-22 13:45:46 +00:00
bool immediate = !extract1(IPUBWL, 5);
// calculate the offset
uint32_t calcOffset;
if (!immediate) {
// REGISTER
uint32_t Rm = extract(offset, 3, 0);
calcOffset = GPRs[Rm];
uint8_t shiftBy = extract(offset, 11, 7);
switch (extract(offset, 6, 5)) {
case 0: // Logical Left (LSL)
if (shiftBy > 0)
calcOffset <<= shiftBy;
break;
case 1: // Logical Right (LSR)
if (shiftBy == 0)
calcOffset = 0;
else
calcOffset >>= shiftBy;
break;
case 2: // Arithmetic Right (ASR)
if (shiftBy == 0)
calcOffset = (int32_t)calcOffset >> 31;
else
calcOffset = (int32_t)calcOffset >> shiftBy;
break;
case 3: // Rotate Right (ROR)
if (shiftBy == 0) { // treated as RRX
calcOffset >>= 1;
calcOffset |= flagC() ? 0x80000000 : 0;
} else
calcOffset = ROR(calcOffset, shiftBy);
break;
}
} else {
// IMMEDIATE
2019-12-22 13:45:46 +00:00
// No rotation or anything here
calcOffset = offset;
}
uint32_t base = GPRs[Rn];
if (Rn == 15) base -= 4; // prefetch adjustment
uint32_t modifiedBase = up ? (base + calcOffset) : (base - calcOffset);
uint32_t transferAddr = preIndex ? modifiedBase : base;
bool changeModes = !preIndex && writeback && isPrivileged();
auto saveMode = currentMode();
MMUFault fault;
if (load) {
if (changeModes) switchMode(User32);
auto readResult = readVirtual(transferAddr, valueSize);
if (changeModes) switchMode(saveMode);
2019-12-22 13:45:46 +00:00
if (readResult.first.has_value()) {
GPRs[Rd] = readResult.first.value();
2019-12-22 13:45:46 +00:00
if (Rd == 15) prefetchCount = 0;
}
fault = readResult.second;
} else {
uint32_t value = GPRs[Rd];
if (changeModes) switchMode(User32);
fault = writeVirtual(value, transferAddr, valueSize);
if (changeModes) switchMode(saveMode);
}
if ((preIndex && writeback) || !preIndex)
GPRs[Rn] = modifiedBase;
if (fault != NoFault)
reportFault(fault);
return 2;
}
uint32_t ARM710T::execBlockDataTransfer(uint32_t PUSWL, uint32_t Rn, uint32_t registerList)
{
bool load = extract1(PUSWL, 0);
bool store = !load;
bool writeback = extract1(PUSWL, 1);
bool psrForceUser = extract1(PUSWL, 2);
bool up = extract1(PUSWL, 3);
bool preIndex = extract1(PUSWL, 4);
MMUFault fault = NoFault;
uint32_t base = GPRs[Rn] & ~3;
uint32_t blockSize = popcount32(registerList) * 4;
uint32_t lowAddr, updatedBase;
if (up) {
updatedBase = base + blockSize;
lowAddr = base + (preIndex ? 4 : 0);
} else {
updatedBase = base - blockSize;
lowAddr = updatedBase + (preIndex ? 0 : 4);
}
auto saveBank = bank;
if (psrForceUser && (store || !(registerList & 0x8000)))
switchBank(MainBank);
bool doneWriteback = false;
if (load && writeback) {
doneWriteback = true;
GPRs[Rn] = updatedBase;
}
uint32_t addr = lowAddr;
for (int i = 0; i < 16; i++) {
if (registerList & (1 << i)) {
// work on this one
if (load) {
// handling for LDM faults may be kinda iffy...
// wording on datasheet is a bit unclear
auto readResult = readVirtual(addr, V32);
if (readResult.first.has_value())
GPRs[i] = readResult.first.value();
if (readResult.second != NoFault) {
fault = readResult.second;
break;
}
} else {
auto newFault = writeVirtual(GPRs[i], addr, V32);
if (newFault != NoFault)
fault = newFault;
}
addr += 4;
if (writeback && !doneWriteback) {
doneWriteback = true;
GPRs[Rn] = updatedBase;
}
}
}
2019-12-22 13:45:46 +00:00
if (registerList & 0x8000)
prefetchCount = 0;
// datasheet specifies that base register must be
// restored if an error occurs during LDM
if (load && fault != NoFault)
GPRs[Rn] = writeback ? updatedBase : base;
if (psrForceUser && (!load || !(registerList & 0x8000)))
switchBank(saveBank);
if (fault != NoFault)
reportFault(fault);
return 0; // fixme
}
uint32_t ARM710T::execBranch(bool L, uint32_t offset)
{
if (L)
GPRs[14] = GPRs[15] - 8;
// start with 24 bits, shift left 2, sign extend to 32
int32_t sextOffset = (int32_t)(offset << 8) >> 6;
prefetchCount = 0;
GPRs[15] -= 4; // account for our prefetch being +4 too much
GPRs[15] += sextOffset;
return 0;
}
uint32_t ARM710T::execCP15RegisterTransfer(uint32_t CPOpc, bool L, uint32_t CRn, uint32_t Rd, uint32_t CP, uint32_t CRm)
{
(void)CP;
(void)CRm;
if (!isPrivileged())
return 0;
if (L) {
// read a value
uint32_t what = 0;
switch (CRn) {
case 0: what = cp15_id; break;
case 5: what = cp15_faultStatus; break;
case 6: what = cp15_faultAddress; break;
}
if (Rd == 15)
CPSR = (CPSR & ~CPSR_FlagMask) | (what & CPSR_FlagMask);
else
GPRs[Rd] = what;
} else {
// store a value
uint32_t what = GPRs[Rd];
switch (CRn) {
case 1: cp15_control = what; log("setting cp15_control to %08x", what); break;
case 2: cp15_translationTableBase = what; break;
case 3: cp15_domainAccessControl = what; break;
case 5: cp15_faultStatus = what; break;
case 6: cp15_faultAddress = what; break;
case 7: clearCache(); log("cache cleared"); break;
case 8: {
if (CPOpc == 1)
flushTlb(what);
else
flushTlb();
break;
}
}
}
return 0;
}
void ARM710T::clearCache() {
for (uint32_t i = 0; i < CacheSets; i++) {
for (uint32_t j = 0; j < CacheBlocksPerSet; j++) {
cacheBlockTags[i][j] = 0;
}
}
}
uint8_t *ARM710T::findCacheLine(uint32_t virtAddr) {
uint32_t set = virtAddr & CacheAddressSetMask;
uint32_t tag = virtAddr & CacheAddressTagMask;
set >>= CacheAddressSetShift;
for (uint32_t i = 0; i < CacheBlocksPerSet; i++) {
if (cacheBlockTags[set][i] & CacheBlockEnabled) {
if ((cacheBlockTags[set][i] & ~CacheBlockEnabled) == tag)
return &cacheBlocks[set][i][0];
}
}
return nullptr;
}
pair<MaybeU32, ARM710T::MMUFault> ARM710T::addCacheLineAndRead(uint32_t physAddr, uint32_t virtAddr, ValueSize valueSize, int domain, bool isPage) {
uint32_t set = virtAddr & CacheAddressSetMask;
uint32_t tag = virtAddr & CacheAddressTagMask;
set >>= CacheAddressSetShift;
// "it will be randomly placed in a cache bank"
// - the ARM710a data sheet, 6-2 (p90)
uint32_t i = rand() % CacheBlocksPerSet;
uint8_t *block = &cacheBlocks[set][i][0];
MaybeU32 result;
MMUFault fault = NoFault;
for (uint32_t j = 0; j < CacheBlockSize; j += 4) {
auto word = readPhysical((physAddr & ~CacheAddressLineMask) + j, V32);
if (word.has_value()) {
write32LE(&block[j], word.value());
if (valueSize == V8 && j == (virtAddr & CacheAddressLineMask & ~3))
result = (word.value() >> ((virtAddr & 3) * 8)) & 0xFF;
else if (valueSize == V32 && j == (virtAddr & CacheAddressLineMask))
result = word.value();
} else {
// read error, great
// TODO: should probably prioritise specific kinds of faults over others
fault = encodeFaultSorP(SorPLinefetchError, isPage, domain, virtAddr & ~CacheAddressLineMask);
break;
}
}
// the cache block is only stored if it's complete
if (fault == NoFault)
cacheBlockTags[set][i] = tag | CacheBlockEnabled;
return make_pair(result, fault);
}
MaybeU32 ARM710T::readCached(uint32_t virtAddr, ValueSize valueSize) {
uint8_t *line = findCacheLine(virtAddr);
if (line) {
if (valueSize == V8)
return line[virtAddr & CacheAddressLineMask];
else /*if (valueSize == V32)*/
return read32LE(&line[virtAddr & CacheAddressLineMask]);
}
return {};
}
bool ARM710T::writeCached(uint32_t value, uint32_t virtAddr, ValueSize valueSize) {
uint8_t *line = findCacheLine(virtAddr);
if (line) {
if (valueSize == V8)
line[virtAddr & CacheAddressLineMask] = value & 0xFF;
else /*if (valueSize == V32)*/
write32LE(&line[virtAddr & CacheAddressLineMask], value);
return true;
}
return false;
}
uint32_t ARM710T::physAddrFromTlbEntry(TlbEntry *tlbEntry, uint32_t virtAddr) {
if ((tlbEntry->lv2Entry & 3) == 2) {
// Smøl page
return (tlbEntry->lv2Entry & 0xFFFFF000) | (virtAddr & 0xFFF);
} else if ((tlbEntry->lv2Entry & 3) == 1) {
// Lørge page
return (tlbEntry->lv2Entry & 0xFFFF0000) | (virtAddr & 0xFFFF);
} else {
// Section
return (tlbEntry->lv1Entry & 0xFFF00000) | (virtAddr & 0xFFFFF);
}
}
MaybeU32 ARM710T::virtToPhys(uint32_t virtAddr) {
if (!isMMUEnabled())
return virtAddr;
TlbEntry tempEntry;
auto translated = translateAddressUsingTlb(virtAddr, &tempEntry);
if (holds_alternative<TlbEntry *>(translated)) {
auto tlbEntry = get<TlbEntry *>(translated);
return physAddrFromTlbEntry(tlbEntry, virtAddr);
} else {
return MaybeU32();
}
}
MaybeU32 ARM710T::readVirtualDebug(uint32_t virtAddr, ValueSize valueSize) {
if (auto v = virtToPhys(virtAddr); v.has_value())
return readPhysical(v.value(), valueSize);
else
return {};
}
pair<MaybeU32, ARM710T::MMUFault> ARM710T::readVirtual(uint32_t virtAddr, ValueSize valueSize) {
if (isAlignmentFaultEnabled() && valueSize == V32 && virtAddr & 3)
return make_pair(MaybeU32(), encodeFault(AlignmentFault, 0, virtAddr));
// fast path: cache
if (auto v = readCached(virtAddr, valueSize); v.has_value())
return make_pair(v.value(), NoFault);
if (!isMMUEnabled()) {
// things are very simple without a MMU
if (auto v = readPhysical(virtAddr, valueSize); v.has_value())
return make_pair(v.value(), NoFault);
else
2019-12-22 13:45:46 +00:00
return make_pair(MaybeU32(), encodeFault(NonMMUError, 0, virtAddr));
}
auto translated = translateAddressUsingTlb(virtAddr);
if (holds_alternative<MMUFault>(translated))
return make_pair(MaybeU32(), get<MMUFault>(translated));
// resolve this boy
auto tlbEntry = get<TlbEntry *>(translated);
if (auto f = checkAccessPermissions(tlbEntry, virtAddr, false); f != NoFault)
return make_pair(MaybeU32(), f);
int domain = (tlbEntry->lv1Entry >> 5) & 0xF;
bool isPage = (tlbEntry->lv2Entry != 0);
uint32_t physAddr = physAddrFromTlbEntry(tlbEntry, virtAddr);
bool cacheable = tlbEntry->lv2Entry ? (tlbEntry->lv2Entry & 8) : (tlbEntry->lv1Entry & 8);
if (cacheable && isCacheEnabled())
return addCacheLineAndRead(physAddr, virtAddr, valueSize, domain, isPage);
else if (auto result = readPhysical(physAddr, valueSize); result.has_value())
return make_pair(result, NoFault);
else
return make_pair(result, encodeFaultSorP(SorPOtherBusError, isPage, domain, virtAddr));
}
ARM710T::MMUFault ARM710T::writeVirtual(uint32_t value, uint32_t virtAddr, ValueSize valueSize) {
if (isAlignmentFaultEnabled() && valueSize == V32 && virtAddr & 3)
return encodeFault(AlignmentFault, 0, virtAddr);
if (!isMMUEnabled()) {
// direct virtual -> physical mapping, sans MMU
if (!writePhysical(value, virtAddr, valueSize))
2019-12-22 13:45:46 +00:00
return encodeFault(NonMMUError, 0, virtAddr);
} else {
auto translated = translateAddressUsingTlb(virtAddr);
if (holds_alternative<MMUFault>(translated))
return get<MMUFault>(translated);
// resolve this boy
auto tlbEntry = get<TlbEntry *>(translated);
if (auto f = checkAccessPermissions(tlbEntry, virtAddr, true); f != NoFault)
return f;
uint32_t physAddr = physAddrFromTlbEntry(tlbEntry, virtAddr);
int domain = (tlbEntry->lv1Entry >> 5) & 0xF;
bool isPage = (tlbEntry->lv2Entry != 0);
if (!writePhysical(value, physAddr, valueSize))
return encodeFaultSorP(SorPOtherBusError, isPage, domain, virtAddr);
}
// commit to cache if all was good
writeCached(value, virtAddr, valueSize);
return NoFault;
}
// TLB
void ARM710T::flushTlb() {
for (TlbEntry &e : tlb)
e = {0, 0, 0, 0};
}
void ARM710T::flushTlb(uint32_t virtAddr) {
for (TlbEntry &e : tlb) {
if (e.addrMask && (virtAddr & e.addrMask) == e.addr) {
e = {0, 0, 0, 0};
break;
}
}
}
ARM710T::TlbEntry *ARM710T::_allocateTlbEntry(uint32_t addrMask, uint32_t addr) {
TlbEntry *entry = &tlb[nextTlbIndex];
entry->addrMask = addrMask;
entry->addr = addr & addrMask;
nextTlbIndex = (nextTlbIndex + 1) % TlbSize;
return entry;
}
variant<ARM710T::TlbEntry *, ARM710T::MMUFault> ARM710T::translateAddressUsingTlb(uint32_t virtAddr, TlbEntry *useMe) {
// first things first, do we have a matching entry in the TLB?
for (TlbEntry &e : tlb) {
if (e.addrMask && (virtAddr & e.addrMask) == e.addr)
return &e;
}
// no, so do a page table walk
TlbEntry *entry;
uint32_t tableIndex = virtAddr >> 20;
// fetch the Level 1 entry
auto lv1EntryOpt = readPhysical(cp15_translationTableBase | (tableIndex << 2), V32);
if (!lv1EntryOpt.has_value())
return Lv1TranslationError;
auto lv1Entry = lv1EntryOpt.value();
int domain = (lv1Entry >> 5) & 0xF;
switch (lv1Entry & 3) {
case 0:
case 3:
// invalid!
return encodeFault(SectionTranslationFault, domain, virtAddr);
case 2:
// a Section entry is straightforward
// we just throw that immediately into the TLB
entry = useMe ? useMe : _allocateTlbEntry(0xFFF00000, virtAddr);
entry->lv1Entry = lv1Entry;
entry->lv2Entry = 0;
return entry;
case 1:
// a Page requires a Level 2 read
uint32_t pageTableAddr = lv1Entry & 0xFFFFFC00;
uint32_t lv2TableIndex = (virtAddr >> 12) & 0xFF;
auto lv2EntryOpt = readPhysical(pageTableAddr | (lv2TableIndex << 2), V32);
if (!lv2EntryOpt.has_value())
return encodeFault(Lv2TranslationError, domain, virtAddr);
auto lv2Entry = lv2EntryOpt.value();
switch (lv2Entry & 3) {
case 0:
case 3:
// invalid!
return encodeFault(PageTranslationFault, domain, virtAddr);
case 1:
// Large 64kb page
entry = useMe ? useMe : _allocateTlbEntry(0xFFFF0000, virtAddr);
entry->lv1Entry = lv1Entry;
entry->lv2Entry = lv2Entry;
return entry;
case 2:
// Small 4kb page
entry = useMe ? useMe : _allocateTlbEntry(0xFFFFF000, virtAddr);
entry->lv1Entry = lv1Entry;
entry->lv2Entry = lv2Entry;
return entry;
}
}
// we should never get here as the switch covers 0, 1, 2, 3
// but this satisfies a compiler warning
return SectionTranslationFault;
}
ARM710T::MMUFault ARM710T::checkAccessPermissions(ARM710T::TlbEntry *entry, uint32_t virtAddr, bool isWrite) const {
int domain;
int accessPerms;
bool isPage;
// extract info from the entries
domain = (entry->lv1Entry >> 5) & 0xF;
if (entry->lv2Entry) {
// Page
accessPerms = (entry->lv2Entry >> 4) & 0xFF;
int permIndex;
if ((entry->lv2Entry & 3) == 1) // Large 64kb
permIndex = (virtAddr >> 14) & 3;
else // Small 4kb
permIndex = (virtAddr >> 10) & 3;
accessPerms >>= (permIndex * 2);
accessPerms &= 3;
isPage = true;
} else {
// Section
accessPerms = (entry->lv1Entry >> 10) & 3;
isPage = false;
}
// now, do our checks
int primaryAccessControls = (cp15_domainAccessControl >> (domain * 2)) & 3;
// Manager: always allowed
if (primaryAccessControls == 3)
return NoFault;
// Client: enforce checks!
if (primaryAccessControls == 1) {
#define OK_IF_TRUE(b) return ((b) ? NoFault : encodeFaultSorP(SorPPermissionFault, isPage, domain, virtAddr))
bool System = cp15_control & 0x100;
bool ROM = cp15_control & 0x200;
if (accessPerms == 0) {
if (!System && !ROM) {
// 00/0/0: Any access generates a permission fault
OK_IF_TRUE(false);
} else if (System && !ROM) {
// 00/1/0: Supervisor read only permitted
OK_IF_TRUE(!isWrite && isPrivileged());
} else if (!System && ROM) {
// 00/0/1: Any write generates a permission fault
OK_IF_TRUE(!isWrite);
} else /*if (System && ROM)*/ {
// Reserved
OK_IF_TRUE(false);
}
} else if (accessPerms == 1) {
// 01/x/x: Access allowed only in Supervisor mode
OK_IF_TRUE(isPrivileged());
} else if (accessPerms == 2) {
// 10/x/x: Writes in User mode cause permission fault
OK_IF_TRUE(!isWrite || isPrivileged());
} else /*if (accessPerms == 3)*/ {
// 11/x/x: All access types permitted in both modes
OK_IF_TRUE(true);
}
#undef OK_IF_TRUE
}
// No Access or Reserved: never allowed (Domain Fault)
return encodeFaultSorP(SorPDomainFault, isPage, domain, virtAddr);
}
void ARM710T::reportFault(MMUFault fault) {
if (fault != NoFault) {
if ((fault & 0xF) != NonMMUError) {
2019-12-22 13:45:46 +00:00
cp15_faultStatus = fault & (MMUFaultTypeMask | MMUFaultDomainMask);
cp15_faultAddress = fault >> MMUFaultAddressShift;
}
2019-12-22 13:45:46 +00:00
static const char *faultTypes[] = {
"NoFault",
"AlignmentFault",
"???",
"NonMMUError",
"SectionLinefetchError",
"SectionTranslationFault",
"PageLinefetchError",
"PageTranslationFault",
"SectionOtherBusError",
"SectionDomainFault",
"PageOtherBusError",
"PageDomainFault",
"Lv1TranslationError",
"SectionPermissionFault",
"Lv2TranslationError",
"PagePermissionFault"
};
log("⚠️ Fault type=%s domain=%d address=%08x pc=%08x lr=%08x",
faultTypes[fault & MMUFaultTypeMask],
(fault & MMUFaultDomainMask) >> MMUFaultDomainShift,
fault >> MMUFaultAddressShift,
GPRs[15], GPRs[14]);
// this signals a branch to DataAbort after the
// instruction is done executing
faultTriggeredThisCycle = true;
}
}
2019-12-22 13:45:46 +00:00
void ARM710T::log(const char *format, ...) {
2019-12-22 13:45:46 +00:00
if (logger) {
char buffer[1024];
va_list vaList;
va_start(vaList, format);
vsnprintf(buffer, sizeof(buffer), format, vaList);
va_end(vaList);
logger(buffer);
}
}
void ARM710T::test() {
2019-12-22 13:45:46 +00:00
uint64_t result;
uint32_t flags = 0;
uint32_t v = 0x10000000;
SUB_OP(v, v, 1);
log("RESULT:%llx FLAGS:%08x", result, flags);
}