#include "windermere.h" #include "wind_defs.h" #include "hardware.h" #include #include "common.h" //#define INCLUDE_D //#define INCLUDE_BANK1 namespace Windermere { Emulator::Emulator() : EmuBase(true), etna(this) { } uint32_t Emulator::getRTC() { return time(nullptr) - 946684800; } uint32_t Emulator::readReg8(uint32_t reg) { if ((reg & 0xF00) == 0x600) { return uart1.readReg8(reg & 0xFF); } else if ((reg & 0xF00) == 0x700) { return uart2.readReg8(reg & 0xFF); } else if (reg == TC1CTRL) { return tc1.config; } else if (reg == TC2CTRL) { return tc2.config; } else if (reg == PADR) { return readKeyboard(kScan); } else if (reg == PBDR) { return (portValues >> 16) & 0xFF; } else if (reg == PCDR) { return (portValues >> 8) & 0xFF; } else if (reg == PDDR) { return portValues & 0xFF; } else if (reg == PADDR) { return (portDirections >> 24) & 0xFF; } else if (reg == PBDDR) { return (portDirections >> 16) & 0xFF; } else if (reg == PCDDR) { return (portDirections >> 8) & 0xFF; } else if (reg == PDDDR) { return portDirections & 0xFF; } else { // printf("RegRead8 unknown:: pc=%08x lr=%08x reg=%03x\n", getGPR(15)-4, getGPR(14), reg); return 0xFF; } } uint32_t Emulator::readReg32(uint32_t reg) { if (reg == LCDCTL) { printf("LCD control read pc=%08x lr=%08x !!!\n", getGPR(15), getGPR(14)); return lcdControl; } else if (reg == LCDST) { printf("LCD state read pc=%08x lr=%08x !!!\n", getGPR(15), getGPR(14)); return 0xFFFFFFFF; } else if (reg == PWRSR) { // printf("!!! PWRSR read pc=%08x lr=%08x !!!\n", getGPR(15), getGPR(14)); return pwrsr; } else if (reg == INTSR) { return pendingInterrupts & interruptMask; } else if (reg == INTRSR) { return pendingInterrupts; } else if (reg == INTENS) { return interruptMask; } else if ((reg & 0xF00) == 0x600) { return uart1.readReg32(reg & 0xFF); } else if ((reg & 0xF00) == 0x700) { return uart2.readReg32(reg & 0xFF); } else if (reg == TC1VAL) { return tc1.value; } else if (reg == TC2VAL) { return tc2.value; } else if (reg == SSSR) { // printf("!!! SSSR kludge! !!!\n"); return 0; } else if (reg == RTCDRL) { // uint16_t v = getRTC() & 0xFFFF; uint16_t v = rtc & 0xFFFF; // printf("RTCDRL: %04x\n", v); return v; } else if (reg == RTCDRU) { // uint16_t v = getRTC() >> 16; uint16_t v = rtc >> 16; // printf("RTCDRU: %04x\n", v); return v; } else if (reg == KSCAN) { return kScan; } else { // printf("RegRead32 unknown:: pc=%08x lr=%08x reg=%03x\n", getGPR(15)-4, getGPR(14), reg); return 0xFFFFFFFF; } } void Emulator::writeReg8(uint32_t reg, uint8_t value) { if ((reg & 0xF00) == 0x600) { uart1.writeReg8(reg & 0xFF, value); } else if ((reg & 0xF00) == 0x700) { uart2.writeReg8(reg & 0xFF, value); } else if (reg == TC1CTRL) { tc1.config = value; } else if (reg == TC2CTRL) { tc2.config = value; } else if (reg == PADR) { uint32_t oldPorts = portValues; portValues &= 0x00FFFFFF; portValues |= (uint32_t)value << 24; diffPorts(oldPorts, portValues); } else if (reg == PBDR) { uint32_t oldPorts = portValues; portValues &= 0xFF00FFFF; portValues |= (uint32_t)value << 16; if ((portValues & 0x10000) && !(oldPorts & 0x10000)) etna.setPromBit0High(); else if (!(portValues & 0x10000) && (oldPorts & 0x10000)) etna.setPromBit0Low(); if ((portValues & 0x20000) && !(oldPorts & 0x20000)) etna.setPromBit1High(); diffPorts(oldPorts, portValues); } else if (reg == PCDR) { uint32_t oldPorts = portValues; portValues &= 0xFFFF00FF; portValues |= (uint32_t)value << 8; diffPorts(oldPorts, portValues); } else if (reg == PDDR) { uint32_t oldPorts = portValues; portValues &= 0xFFFFFF00; portValues |= (uint32_t)value; diffPorts(oldPorts, portValues); } else if (reg == PADDR) { portDirections &= 0x00FFFFFF; portDirections |= (uint32_t)value << 24; } else if (reg == PBDDR) { portDirections &= 0xFF00FFFF; portDirections |= (uint32_t)value << 16; } else if (reg == PCDDR) { portDirections &= 0xFFFF00FF; portDirections |= (uint32_t)value << 8; } else if (reg == PDDDR) { portDirections &= 0xFFFFFF00; portDirections |= (uint32_t)value; } else if (reg == KSCAN) { kScan = value; } else { // printf("RegWrite8 unknown:: pc=%08x reg=%03x value=%02x\n", getGPR(15)-4, reg, value); } } void Emulator::writeReg32(uint32_t reg, uint32_t value) { if (reg == LCDCTL) { printf("LCD: ctl write %08x\n", value); lcdControl = value; } else if (reg == LCD_DBAR1) { printf("LCD: address write %08x\n", value); lcdAddress = value; } else if (reg == LCDT0) { printf("LCD: horz timing write %08x\n", value); } else if (reg == LCDT1) { printf("LCD: vert timing write %08x\n", value); } else if (reg == LCDT2) { printf("LCD: clocks write %08x\n", value); } else if (reg == INTENS) { // diffInterrupts(interruptMask, interruptMask | value); interruptMask |= value; } else if (reg == INTENC) { // diffInterrupts(interruptMask, interruptMask &~ value); interruptMask &= ~value; } else if (reg == HALT) { halted = true; // BLEOI = 0x410, // MCEOI = 0x414, } else if (reg == TEOI) { pendingInterrupts &= ~(1 << TINT); // TEOI = 0x418, // STFCLR = 0x41C, // E2EOI = 0x420, } else if ((reg & 0xF00) == 0x600) { uart1.writeReg32(reg & 0xFF, value); } else if ((reg & 0xF00) == 0x700) { uart2.writeReg32(reg & 0xFF, value); } else if (reg == TC1LOAD) { tc1.load(value); } else if (reg == TC1EOI) { pendingInterrupts &= ~(1 << TC1OI); } else if (reg == TC2LOAD) { tc2.load(value); } else if (reg == TC2EOI) { pendingInterrupts &= ~(1 << TC2OI); } else { // printf("RegWrite32 unknown:: pc=%08x reg=%03x value=%08x\n", getGPR(15)-4, reg, value); } } MaybeU32 Emulator::readPhysical(uint32_t physAddr, ValueSize valueSize) { uint8_t region = (physAddr >> 24) & 0xF1; if (valueSize == V8) { if (region == 0) return ROM[physAddr & 0xFFFFFF]; else if (region == 0x10) return ROM2[physAddr & 0x3FFFF]; else if (region == 0x20 && physAddr <= 0x20000FFF) return etna.readReg8(physAddr & 0xFFF); else if (region == 0x80 && physAddr <= 0x80000FFF) return readReg8(physAddr & 0xFFF); #if defined(INCLUDE_BANK1) else if (region == 0xC0) return MemoryBlockC0[physAddr & MemoryBlockMask]; else if (region == 0xC1) return MemoryBlockC1[physAddr & MemoryBlockMask]; else if (region == 0xD0) return MemoryBlockD0[physAddr & MemoryBlockMask]; else if (region == 0xD1) return MemoryBlockD1[physAddr & MemoryBlockMask]; #elif defined(INCLUDE_D) else if (region == 0xC0 || region == 0xC1) return MemoryBlockC0[physAddr & MemoryBlockMask]; else if (region == 0xD0 || region == 0xD1) return MemoryBlockD0[physAddr & MemoryBlockMask]; #else else if (region == 0xC0 || region == 0xC1 || region == 0xD0 || region == 0xD1) return MemoryBlockC0[physAddr & MemoryBlockMask]; #endif else if (region >= 0xC0) return 0xFF; // just throw accesses to unmapped RAM away } else { uint32_t result; if (region == 0) LOAD_32LE(result, physAddr & 0xFFFFFF, ROM); else if (region == 0x10) LOAD_32LE(result, physAddr & 0x3FFFF, ROM2); else if (region == 0x20 && physAddr <= 0x20000FFF) result = etna.readReg32(physAddr & 0xFFF); else if (region == 0x80 && physAddr <= 0x80000FFF) result = readReg32(physAddr & 0xFFF); #if defined(INCLUDE_BANK1) else if (region == 0xC0) LOAD_32LE(result, physAddr & MemoryBlockMask, MemoryBlockC0); else if (region == 0xC1) LOAD_32LE(result, physAddr & MemoryBlockMask, MemoryBlockC1); else if (region == 0xD0) LOAD_32LE(result, physAddr & MemoryBlockMask, MemoryBlockD0); else if (region == 0xD1) LOAD_32LE(result, physAddr & MemoryBlockMask, MemoryBlockD1); #elif defined(INCLUDE_D) else if (region == 0xC0 || region == 0xC1) LOAD_32LE(result, physAddr & MemoryBlockMask, MemoryBlockC0); else if (region == 0xD0 || region == 0xD1) LOAD_32LE(result, physAddr & MemoryBlockMask, MemoryBlockD0); #else else if (region == 0xC0 || region == 0xC1 || region == 0xD0 || region == 0xD1) LOAD_32LE(result, physAddr & MemoryBlockMask, MemoryBlockC0); #endif else if (region >= 0xC0) return 0xFFFFFFFF; // just throw accesses to unmapped RAM away else return {}; return result; } return {}; } bool Emulator::writePhysical(uint32_t value, uint32_t physAddr, ValueSize valueSize) { uint8_t region = (physAddr >> 24) & 0xF1; if (valueSize == V8) { #if defined(INCLUDE_BANK1) if (region == 0xC0) MemoryBlockC0[physAddr & MemoryBlockMask] = (uint8_t)value; else if (region == 0xC1) MemoryBlockC1[physAddr & MemoryBlockMask] = (uint8_t)value; else if (region == 0xD0) MemoryBlockD0[physAddr & MemoryBlockMask] = (uint8_t)value; else if (region == 0xD1) MemoryBlockD1[physAddr & MemoryBlockMask] = (uint8_t)value; #elif defined(INCLUDE_D) if (region == 0xC0 || region == 0xC1) MemoryBlockC0[physAddr & MemoryBlockMask] = (uint8_t)value; else if (region == 0xD0 || region == 0xD1) MemoryBlockD0[physAddr & MemoryBlockMask] = (uint8_t)value; #else if (region == 0xC0 || region == 0xC1 || region == 0xD0 || region == 0xD1) MemoryBlockC0[physAddr & MemoryBlockMask] = (uint8_t)value; #endif else if (region >= 0xC0) return true; // just throw accesses to unmapped RAM away else if (region == 0x20 && physAddr <= 0x20000FFF) etna.writeReg8(physAddr & 0xFFF, value); else if (region == 0x80 && physAddr <= 0x80000FFF) writeReg8(physAddr & 0xFFF, value); else return false; } else { uint8_t region = (physAddr >> 24) & 0xF1; #if defined(INCLUDE_BANK1) if (region == 0xC0) STORE_32LE(value, physAddr & MemoryBlockMask, MemoryBlockC0); else if (region == 0xC1) STORE_32LE(value, physAddr & MemoryBlockMask, MemoryBlockC1); else if (region == 0xD0) STORE_32LE(value, physAddr & MemoryBlockMask, MemoryBlockD0); else if (region == 0xD1) STORE_32LE(value, physAddr & MemoryBlockMask, MemoryBlockD1); #elif defined(INCLUDE_D) if (region == 0xC0 || region == 0xC1) STORE_32LE(value, physAddr & MemoryBlockMask, MemoryBlockC0); else if (region == 0xD0 || region == 0xD1) STORE_32LE(value, physAddr & MemoryBlockMask, MemoryBlockD0); #else if (region == 0xC0 || region == 0xC1 || region == 0xD0 || region == 0x01) STORE_32LE(value, physAddr & MemoryBlockMask, MemoryBlockC0); #endif else if (region >= 0xC0) return true; // just throw accesses to unmapped RAM away else if (region == 0x20 && physAddr <= 0x20000FFF) etna.writeReg32(physAddr & 0xFFF, value); else if (region == 0x80 && physAddr <= 0x80000FFF) writeReg32(physAddr & 0xFFF, value); else return false; } return true; } void Emulator::configure() { if (configured) return; configured = true; srand(1000); uart1.cpu = this; uart2.cpu = this; memset(&tc1, 0, sizeof(tc1)); memset(&tc2, 0, sizeof(tc1)); tc1.clockSpeed = CLOCK_SPEED; tc2.clockSpeed = CLOCK_SPEED; nextTickAt = TICK_INTERVAL; rtc = getRTC(); reset(); } void Emulator::loadROM(uint8_t *buffer, size_t size) { memcpy(ROM, buffer, min(size, sizeof(ROM))); } void Emulator::executeUntil(int64_t cycles) { if (!configured) configure(); while (!asleep && passedCycles < cycles) { if (passedCycles >= nextTickAt) { // increment RTCDIV if ((pwrsr & 0x3F) == 0x3F) { rtc++; pwrsr &= ~0x3F; } else { pwrsr++; } nextTickAt += TICK_INTERVAL; pendingInterrupts |= (1<= 0x80000000 && new_pc <= 0x90000000) { log("BAD PC %08x!!", new_pc); logPcHistory(); return; } } } } const char *Emulator::identifyObjectCon(uint32_t ptr) { if (ptr == readVirtualDebug(0x80000980, V32).value()) return "process"; if (ptr == readVirtualDebug(0x80000984, V32).value()) return "thread"; if (ptr == readVirtualDebug(0x80000988, V32).value()) return "chunk"; // if (ptr == readVirtualDebug(0x8000098C, V32).value()) return "semaphore"; // if (ptr == readVirtualDebug(0x80000990, V32).value()) return "mutex"; if (ptr == readVirtualDebug(0x80000994, V32).value()) return "logicaldevice"; if (ptr == readVirtualDebug(0x80000998, V32).value()) return "physicaldevice"; if (ptr == readVirtualDebug(0x8000099C, V32).value()) return "channel"; if (ptr == readVirtualDebug(0x800009A0, V32).value()) return "server"; // if (ptr == readVirtualDebug(0x800009A4, V32).value()) return "unk9A4"; // name always null if (ptr == readVirtualDebug(0x800009AC, V32).value()) return "library"; // if (ptr == readVirtualDebug(0x800009B0, V32).value()) return "unk9B0"; // name always null // if (ptr == readVirtualDebug(0x800009B4, V32).value()) return "unk9B4"; // name always null return NULL; } void Emulator::fetchStr(uint32_t str, char *buf) { if (str == 0) { strcpy(buf, ""); return; } int size = readVirtualDebug(str, V32).value(); for (int i = 0; i < size; i++) { buf[i] = readVirtualDebug(str + 4 + i, V8).value(); } buf[size] = 0; } void Emulator::fetchName(uint32_t obj, char *buf) { fetchStr(readVirtualDebug(obj + 0x10, V32).value(), buf); } void Emulator::fetchProcessFilename(uint32_t obj, char *buf) { fetchStr(readVirtualDebug(obj + 0x3C, V32).value(), buf); } void Emulator::debugPC(uint32_t pc) { char objName[1000]; if (pc == 0x2CBC4) { // CObjectCon::AddL() uint32_t container = getGPR(0); uint32_t obj = getGPR(1); const char *wut = identifyObjectCon(container); if (wut) { fetchName(obj, objName); if (strcmp(wut, "process") == 0) { char procName[1000]; fetchProcessFilename(obj, procName); log("OBJS: added %s at %08x <%s> <%s>", wut, obj, objName, procName); } else { log("OBJS: added %s at %08x <%s>", wut, obj, objName); } } } if (pc == 0x6D8) { uint32_t virtAddr = getGPR(0); uint32_t physAddr = getGPR(1); uint32_t btIndex = getGPR(2); uint32_t regionSize = getGPR(3); log("KERNEL MMU SECTION: v:%08x p:%08x size:%08x idx:%02x", virtAddr, physAddr, regionSize, btIndex); } if (pc == 0x710) { uint32_t virtAddr = getGPR(0); uint32_t physAddr = getGPR(1); uint32_t btIndex = getGPR(2); uint32_t regionSize = getGPR(3); uint32_t pageTableA = getGPR(4); uint32_t pageTableB = getGPR(5); log("KERNEL MMU PAGES: v:%08x p:%08x size:%08x idx:%02x tableA:%08x tableB:%08x", virtAddr, physAddr, regionSize, btIndex, pageTableA, pageTableB); } } int Emulator::getLCDWidth() const { return 640; } int Emulator::getLCDHeight() const { return 240; } void Emulator::readLCDIntoBuffer(uint8_t **lines) const { if ((lcdAddress >> 24) == 0xC0) { const uint8_t *lcdBuf = &MemoryBlockC0[lcdAddress & MemoryBlockMask]; int width = 640, height = 240; // fetch palette int bpp = 1 << (lcdBuf[1] >> 4); int ppb = 8 / bpp; uint16_t palette[16]; for (int i = 0; i < 16; i++) palette[i] = lcdBuf[i*2] | ((lcdBuf[i*2+1] << 8) & 0xF00); // build our image out int lineWidth = (width * bpp) / 8; for (int y = 0; y < height; y++) { int lineOffs = 0x20 + (lineWidth * y); for (int x = 0; x < width; x++) { uint8_t byte = lcdBuf[lineOffs + (x / ppb)]; int shift = (x & (ppb - 1)) * bpp; int mask = (1 << bpp) - 1; int palIdx = (byte >> shift) & mask; int palValue = palette[palIdx]; palValue |= (palValue << 4); lines[y][x] = palValue ^ 0xFF; } } } } void Emulator::diffPorts(uint32_t oldval, uint32_t newval) { uint32_t changes = oldval ^ newval; if (changes & 1) log("PRT codec enable: %d", newval&1); if (changes & 2) log("PRT audio amp enable: %d", newval&2); if (changes & 4) log("PRT lcd power: %d", newval&4); if (changes & 8) log("PRT etna door: %d", newval&8); if (changes & 0x10) log("PRT sled: %d", newval&0x10); if (changes & 0x20) log("PRT pump pwr2: %d", newval&0x20); if (changes & 0x40) log("PRT pump pwr1: %d", newval&0x40); if (changes & 0x80) log("PRT etna err: %d", newval&0x80); if (changes & 0x100) log("PRT rs-232 rts: %d", newval&0x100); if (changes & 0x200) log("PRT rs-232 dtr toggle: %d", newval&0x200); if (changes & 0x400) log("PRT disable power led: %d", newval&0x400); if (changes & 0x800) log("PRT enable uart1: %d", newval&0x800); if (changes & 0x1000) log("PRT lcd backlight: %d", newval&0x1000); if (changes & 0x2000) log("PRT enable uart0: %d", newval&0x2000); if (changes & 0x4000) log("PRT dictaphone: %d", newval&0x4000); // PROM read process makes this super spammy in stdout // if (changes & 0x10000) log("PRT EECS: %d", newval&0x10000); // if (changes & 0x20000) log("PRT EECLK: %d", newval&0x20000); if (changes & 0x40000) log("PRT contrast0: %d", newval&0x40000); if (changes & 0x80000) log("PRT contrast1: %d", newval&0x80000); if (changes & 0x100000) log("PRT contrast2: %d", newval&0x100000); if (changes & 0x200000) log("PRT contrast3: %d", newval&0x200000); if (changes & 0x400000) log("PRT case open: %d", newval&0x400000); if (changes & 0x800000) log("PRT etna cf power: %d", newval&0x800000); } void Emulator::diffInterrupts(uint16_t oldval, uint16_t newval) { uint16_t changes = oldval ^ newval; if (changes & 1) log("INTCHG external=%d", newval & 1); if (changes & 2) log("INTCHG lowbat=%d", newval & 2); if (changes & 4) log("INTCHG watchdog=%d", newval & 4); if (changes & 8) log("INTCHG mediachg=%d", newval & 8); if (changes & 0x10) log("INTCHG codec=%d", newval & 0x10); if (changes & 0x20) log("INTCHG ext1=%d", newval & 0x20); if (changes & 0x40) log("INTCHG ext2=%d", newval & 0x40); if (changes & 0x80) log("INTCHG ext3=%d", newval & 0x80); if (changes & 0x100) log("INTCHG timer1=%d", newval & 0x100); if (changes & 0x200) log("INTCHG timer2=%d", newval & 0x200); if (changes & 0x400) log("INTCHG rtcmatch=%d", newval & 0x400); if (changes & 0x800) log("INTCHG tick=%d", newval & 0x800); if (changes & 0x1000) log("INTCHG uart1=%d", newval & 0x1000); if (changes & 0x2000) log("INTCHG uart2=%d", newval & 0x2000); if (changes & 0x4000) log("INTCHG lcd=%d", newval & 0x4000); if (changes & 0x8000) log("INTCHG spi=%d", newval & 0x8000); } }