OPL

User Guide

PSiON

[0 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

INTRODUCTION

Welcome to the OPL User Guide for Psion Series 5, Series 3c and Siena machines. This User Guide describes
how you can create and run your own programs using your Psion’s built-in programming language.

KEY
The OPL User Guide uses the following symbols to indicate points of special interest:

QS\A note, for any additional information or details.
& A warning, for advice on avoiding problems.

DIFFERENCES BETWEEN MACHINES

It is important to note that the versions of OPL on the various machines covered by this User Guide are not
exactly the same. When information is given which is specific to one of the machines you will see one of the
following icons:

D for the Series 5
D for the Series 3¢
Siena for the Siena

These icons most frequently appear next to paragraphs which describe machine-dependent features. However, in
some places they appear along side section headings, in which case that section and all its subsections are
specific to the machine indicated. Where no indication is given that information is machine-dependent, you

should assume it applies to all three machines.

In general, the Series 3c and Siena versions of OPL are the same, except in a few small points, and hence where
you see the Series 3c icon and where information given is indicated as being specific to the Series 3c, it
generally refers tboth the Series 3c and the Sienanless specific reference is made to the contrary.

(oPL USER GUIDE -
Z

OPL

CONTENTS

This User Guide is divided into a number of sections according to subject matter and the level of programming
expertise expected of the user. Each of the sections is a self-contained PDF file with its own examples and index.
Below is a list of the User Guide sections together with their filenames in brackets and an outline of their contents.

If you haven't programmed in OPL before, it is recommended that you work through the Basics section first.
This will help you to get to grips with the basic concepts involved.

Use the Overview and Alphabetical Listing section at any time to find either the appropriate command for the
task you want to carry out, or the precise usage of a given command. The information given on commands in
this section will also tell you where you can read more about them.

e You can jump straight to any of the documents listed below by clicking on its title.

BASICS (BASICS.PDF)

This serves as an introduction to programming in OPL and explains its basic concepts. It is divided into 4
sections:

e Creating & Running Programs.
e Variables & Constants.
* Loops & Branches.

e Calling Procedures.

DATA FILE & DATABASE HANDLING (DATABASE.PDF)

This covers the database capabilites of OPL. Its two sections cover:

e Creating, saving and performing operations on data files

and

e Using databases on the Series 5.

GRAPHICS & FRIENDLIER INTERACTION (GUI.PDF)

This document is divided into 2 sections, dealing with:
e Using the powerful graphics capabilities of OPL
and

* How to make your programs friendlier by using features such as menus and dialogs.

(oPL USER GUIDE -
7

OPL

OPL & DISKS (DISKS.PDF)

This document provides information on OPL’s handling on disks used in Psion machines.

EXAMPLE PROGRAMS (PROGRAMS.PDF)

This section provides supplementary example programs for all the machines covered by the User Guide. These
programs aim to illustrate a wide range of OPL’s capabilities.

ERROR HANDLING (ERRORS.PDF)

This document contains information on dealing with errors in your OPL programs, including:
e Syntax errors.

e Errors that occur when running programs.

This document also contains a list of errors and their likely causes.

ADVANCED TOPICS (ADVANCED.PDF)

This document covers a range of topics suitable for more advanced programmers. These include:
* Where files are stored.

e Safe pointer arithmetic.

e Creating OPL applications.

e Cacheing procedures on the Series 3c and Siena.

e Sprite handling on the Series 3c and Siena.

e /O functions and commands.

* Recording and playing sounds.

e DYL handling.

e Memory Allocation.

(oPL USER GUIDE -
7

OPL

USING OPXS ON THE SERIES 5 (OPX.PDF)

This section provides information on OPX procedures provided in the Series 5 ROM for handling the following:
e Date / time extras.

e System controls.

e Bitmaps.

e Sprites.

e Database extras.

* Printing.

OVERVIEW & ALPHABETICAL LISTING (GLOSSARY.PDF)

e The Overview section of this document lists all the OPL keywords grouped according to purpose. Use this
section to find the appropriate command for what you want to do.

e The Lisitng section lists the OPL keywords alphabetically, providing a reference guide to the usage of each.

APPENDICES A-G (APPENDS.PDF)

The seven appendices in this section cover the following information:
* Appendix A: Summary for experienced users.

e Appendix B: Operators and Logical expressions.

e Appendix C: Serial/Parallel ports and printing.

* Appendix D: Character codes.

* Appendix E: Listing of CONST.OPH for the Series 5.

* Appendix F: SQL specification for the Series 5.

e Appendix G: EPOC32 error values (Series 5 only).

(oPL USER GUIDE -
7

OPL

BASICS

This part of the OPL User Guide introduces the basic concepts of programming in OPL. It is
divided into 4 sections:

e Creating & Running Programs: this covers the stages of entering, translating and running a
program in OPL.

e Variables & Constants: this section explains the way values are stored and handled in OPL.

¢ Loops & Branches: this section covers how to repeat commands, wait for given conditions
and so on.

e Calling Procedures: this explains how to link several parts of a program together.

PSiON

[0 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
00 Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS

CREATING & RUNNING PROGRAMS ...t 1
CREATING A NEW MODULE ...ttt et e e et eeeeeean 2
INSIDE THE PROGRAM EDITOR ...ooiiiiiiiiiiiiii ittt 2
AN EXAMPLE PROCEDURE TO TYPE IN it 3
TRANSLATING A MODULE ...coeiiie ettt e e et e e e eebeeeeees 4
RUNNING AFTER TRANSLATING .ceiiiiiiiiiaee ettt e 5
FILE MANAGEMENT L.ttt e e e e e e e eeeeeaebaa s 5
MORE ABOUT RUNNING MODULES ...ttt 6
STOPPING A PROGRAM WHILE IT’S RUNNING ...coitiiiiiiiiiiieeciieeeeee ettt 7
MENU OPTIONS WHILE EDITING ...eeiiiiiiiiiiiieeeeietee ettt et e eiaaeee e 7
SUMMARY ettt e e ettt e e ettt e e e ettt e e e eetba e e e eeaba e e eeenaaanes 9
VARIABLES & CONSTANTS ..o 10
DECLARING VARIABLES ...ttt ettt e e et e et e e e eaaeeeeeean 11
NUMBERS ...ttt e e e ettt e e e e e ettt e e e e seabaa e e e e e e eeaaaeees 11
KT ettt et e ettt et e e e ettt e e e ettt e e e e e et e e e e e s anabae et eeeeenanne 12
ARRAY VARIABLEScoiiiiiee ettt ettt et e e e e e e e e e enaaeeeeeeeane 12
INTTIAL VALUES oottt ettt e e ettt e e e e et eeeaaaaeeeeeeas 12
CHOOSING DESCRIPTIVE NAMESoiiiiiiiiiiiiiiiiii s 12
GIVING VALUES TO VARIABLES ..ottt ettt e eetie e e e 13
ASSIGNING VALUES ...ttt e e 13
ARITHMETIC OPERATIONS ..ottt 14
VALUES FROM FUNCTIONS ..ot 14
EXPRESSIONS ..ttt e 15
CONSTANTS L.ttt e e s e e eaa e e e saae e e sennneeeans 15
PROBLEMS WITH INTEGERScooiiiiiiiiiiiiiii et 16
OPERATIONS ON STRINGS ...ttt 16
DISPLAYING VARIABLES ...ttt ettt e et e e e et e e e eeabneeeees 16
WHERE THE CURSOR GOES AFTER A PRINT L.ooiiiiiiiiiie e 17
DISPLAYING A LIST OF THINGS ..ottt 17
DISPLAYING THE QUOTE CHARACTER ...coiiiiiiiieeee e 17
SINGLE KEYPRESSES ...cooiiiiiiiiiiieie et 19
EXAMPLE USING GETS ..ottt ettt sttt ettt st sttt e b ettt st nae b 19
MODIFIER KEYS i e 19
SUMMOARY ettt e e e e e et ettt e e e e e e e e e eeeeneneaes 20

BASICS)
4

OPL

LOOPS & BRANCHES ..ottt ee e 21
REPEATING INSTRUCTIONS (LOOPS) weuiiiiiiiiiieeeee ettt e e e 22
DO UNTIL ettt ettt ettt e e ettt e e e e etba e e et eaba e e eeetna e e eeaeraeeeeennannes 22
WHILE...ENDWH ..ttt ettt e e ettt e e e e et e e e e eaaaae e e eeennans 22

EXAMPLE USING WHILE...ENDWH ...cciiiiiiiiiiiiiieeiiiee ettt ettt e e e 23
“NESTING” LOOPS - THE “TOO COMPLEX" MESSAGEcccccoiiiiiiiiiiiiiiiiiiiicicecccc, 24
EXAMPLE USING TF oottt ettt e e et e e e et e e e e ene teeeenns 24
OR OPERATOR ..ttt ettt e e ettt e e e ettt e e e e e entae e e e e e e ananeeeeas 24
EXAMPLE USING DO...UNTIL AND TF ittt e e 24
FUNCTIONS AS ARGUMENTS TO OTHER FUNCTIONSooiiiiiiiiiiiiiiiiiiiiiccec 24
LOGICAL OPERATORS ...ttt ettt ettt e e e e et e e e e e s eirtneeeeeeseannnee 25
JUMPING TO A DIFFERENT LINE ...ttt ettt e et eeeb e eeeeean 26
JUMPING OUT OF A LOOP: BREAKciiiiiiiiiiiiiiiie ittt 26
JUMPING TO THE TEST CONDITION: CONTINUE ..ottt 26
JUMPING TO A ‘LABEL": GOTO .ttt 26
UNTIL O, WHILE T 1ot caneeeeas 27
SUMMARY ettt e ettt e e e et e e e ee bt s e e e etb e e e ettt e e e eaaaan e eeaerans 28

CALLING PROCEDURES .. oottt ettt 29

USING MORE THAN ONE PROCEDURE.......iiiiiiiieiiiiiiee ettt e e e 30

MODULES CONTAINING MORE THAN ONE PROCEDUREccccoviiiiiiiiiiiiiiiciiicceieecee 30
CALLING PROCEDURES ..ottt et s e e et s e e ea b s e e eeaaneeeaeean 30
USES OF CALLING PROCEDUREScoiiiiiiiiiiiiiiiiciiic e 31
PARAMETERS ..ttt e ettt e e e e e e e eeeeeenenan 31
MULTIPLE PARAMETERS ...ttt 32
RETURNING VALUES ...t e e e 33
GLOBAL VARIABLES ... ettt ettt e e ittt e e e et eeeeena e eeeenns 34
PASSING BACK VALUES ...coiiiiiiiiiiiiieieee ettt ettt et e e e 34
‘UNDEFINED EXTERNALS ERROR ..ottt 35
SERIES 5 HEADER FILES, CONSTANTS AND PROCEDURE PROTOTYPESccccceeeeeen. 35
SUMMARY e ettt e ettt e e ettt e e e eebb e e eeetaa e e e eeabaeeeeeeeans 36
INDEX e e e e e e 37

BASICS)
4

OPL

CREATING & RUNNING PROGRAMS

There are 3 stages to producing a program using OPL, the Psion programming language:
e Type in the program, using the Program editor.

e Translate the program. This makes a new version of your program in a format which can

“run”.

e Run the program. If it does not work as you had intended, re-edit it, then translate and run
it again.

This section guides you through these stages with a simple example. If you wish to follow the
example, note that each instruction for you to do something is numbered.

CCREATING PROGRAMS ‘

OPL

As well as the worgbrogram you'll often see the womhoduleused. The termgrogramandmoduleare used
almost interchangeably to describe each OPL file - you say ‘1@&dule’ like you might say “Word Processor
document’.

Create a new module and give it a name:

[] 1. Click the ‘New File’ button (or select ‘Create New File’ from the ‘File’ menu).

2. Select ‘Program’ from the ‘Program’ selector.

3. Typetest as the ‘Name’ to use for this OPL module and press Enter. You will move into the Program
editor.

Module names can be up to 256 characters long (including their folder names), like other file names on the
Series 5. The names may include any charaetexspt\ ,/ and: , and any trailing spaces or dots (.) will
be stripped automatically.

[] 1. Movetothe Program icon on the System screen, and select ‘New file’ from the ‘File’ menu.

2. Typetest as the name to use for this OPL module and press Enter. You will move into the Program
editor.

Module names can be up to 8 characters long, like other filenames on the Series 3c. The names can include
numbers, but must start with a letter.

It's always best to choose a name that describes what the module does. Then, when you've written several
modules, you can still recognise which is which.

When you first move into the Program editor you will see HROC : has already been entered on the first
line, andENDPon the third.

PROC and ENDP are theeywordghat are used to mark the start and endpybaedure Larger modules are
broken up into procedures, each of which has one specific function to perform. A simple OPL module, like the
one you are going to create, consists of only one procedure.

A procedure consists of a numberstdtements— instructions upon which the Psion acts. You type these
statements, in order, betweBROC : andENDP When you come toun the program, the Psion goes through

the statements one by one. When the last statement in the procedure has been completed and ENDP is reached,
the procedure ends.

You can type and edit in the Program editor in much the same way as in the Word application, except that text
you type does not word-wrap; you should press Enter at the end of each statement. Note also that on the Series
3c, the Program editor does not offer text layout features such as styles and emphases.

@ You can use upper or lower case letters when entering OPL keywords.

(CcREATING PROGRAMS [2)

OPL

The next few pages work with this example procedure:

PROC test:
PRINT “This is my OPL program”
PAUSE 80
CLS
PRINT “Press a key to finish”
GET
ENDP
This procedure does nothing of any real use it is just an example of how some common OPL keywords (PRINT,
PAUSE, CLS and GET) are used. The procedure first displlaigsis my OPL program on the screen.
After a few seconds the screen is cleared andRhess a key to finish is displayed. Then, when you

press a key, the program finishes.

Before you type the statements that constitute the procedure, you must type a name for it, afterRRO@ord
The flashing cursor is automatically in the correct place for you to do this (before the colon). You can choose
any name you like within the following restrictions:

[] Procedure names may have up to 32 characters. The alphabetic and numeric characters are allowed and also

the underscore character, The first character of any procedure name must be either an underscore or an
alphabetic character.

[] Procedure names may have up to 8 characters. The alphabetic and numeric characters are allowed only. The
first character of any procedure name must be an alphabetic character.

For simple procedures which are the only procedure in a module, you might use the same filename you gave the
module.

Typetest . The top line should now re&®ROC test:
Press the down arrow key. The cursor is already indented, as if the Tab key had been pressed.
You can now type the statements in this procedure:

TypePRINT “This is my OPL program” . (Note the space aft@RINT.) Press Enter at the end of the
line.

Each new line is automatically indented, so you don’t need to press the Tab key each time. These indents are not
obligatory, though as you'll see, they can make a procedure easier tblogagler, other spacing, such as the
space betwee® AUSEand 80, is essential for the procedure to work properly.

Type the other statements in the procedure. Press Enter at the end of each line. You are now ready to translate
the module and then run it.

When you are entering the statements in a procedure you can, if you want, combine adjacent lines by separating
them with a space and colon. For example, the two lines:

PAUSE 80
CLS

could be combined as this one line:
PAUSE 80 :CLS

You can, of course, use the other Psion applications at any time while you are editing an OPL module.

(CcREATING PROGRAMS [8)

OPL

] Toreturn to editing your programitteer
e tap on the Program icon on the Extras bar,
» select the module’s name on the System sci@en,
e use the Task List to return to the Program editor.

[] use control-word (hold down the Control key and press the Word button) to return to the Program editor
to continue editing your program.

WHAT THE KEYWORDS DO WHEN THE PROGRAM RUNS

PRINT - takes text you enter between quote marks, and displays it on the screen. The text to be displayed, in the
first statement, ighis is my OPL program

PAUSE- pauses the program, for a specified number of twentieths of a SE@dU8E 80 waits for 4 seconds.
(PAUSE 20 would wait for 1 second, and so on.)

CLS- clears the screen.

GET- waits for you to press a key on the keyboard.

TRANSLATING A MODULE
The translation process makes a separate version of your program in a format which the Psion can run.

You'd usually try to translate a module as soon as you finish typing it in, to check for any typing mistakes
you've made, and then to see if the program runs as you intended.

[1 « select the ‘Translate’ option from the ‘Tools’ memutap the ‘“Tran’ button on the toolbar menu.

[] « Selectthe ‘Translate’ option from the ‘Prog’ menu.

The Series 3c ‘Prog’ menu also has a ‘S3 translate’ option, for translating the current program in a form
which can run on a Series 3 (as opposed to a Series 3c).

WHAT HAPPENS WHEN YOU TRANSLATE A MODULE?
First: the procedures in the module are checked for errors

If the Psion cannot understand a procedure, because of a typing error, a message is shown, such as ‘Syntax
error’. The cursor is positioned at the point where the error was detected, so that you can correct it. For example,
you might have typeBRONT “This is...” , or PAUSE8Owithout the space.

When you think you’ve corrected the mistake, select ‘Translate’ again. If there is still a mistake, you are again
taken back to where it was detected.

A If you've already used up almost all of the memory, the Psion may be unable to translate the program, and
will report a ‘No system memory’ message. You'll need to free some memory before trying again.

When ‘Translate’ can find no more errors, the translation will succeed, producing a separate version of
your module in a format which the Psion can run.

There may still be errors in your program at this point because there are some errors which cannot be detected
until you try to run the program.

CCREATING PROGRAMS ‘

OPL

When your module translates successfully, the ‘Run program’ dialog is displayed, asking whether to run the
translated module. You'd usually run it straight away in order to test it.

& Running a module does require some free memory, so again a ‘No system memory’ message is possible.

Press ‘Y’ to run the module; the screen is cleared, and the module runs.
When the module has finished running, you return to the Program editor, with the cursor where it was before.

If an error occurs while the module is running, you will return to editing the module, and the cursor will be
positioned at the point where the error occurred.

You can create new OPL modules in the same way as new Word documents.

[] Either create it from the Program editor using the ‘Create New file’ option in ‘File’ menu, or from the
System screen by clicking on the ‘New File’ button (or select ‘Create New File’ from the ‘File’ menu).

The module names are listed on the System screen with a Program icon next to them. The Program icon looks
like a sheet of paper with “OPL” on it. Successfully translated modules will also be listed in the same folder
as their corresponding Program file with the OPL icon next to them. The OPL icon is just the letters “OPL”
with a shadow.

To re-edit an existing OPL program, you can open the Program application and use the ‘Open file’ option
from the ‘File’ menu. You could also select the file directly from the System screen. This will
automatically open the filand launch the Program application. Files which launch their associated
applications when selected are knowrdasumentsThe applicatiotJID (unique identifier) is stored in

the document header which is read by the system. As far as the user is concerned, the UID specifies a
document’'stype A non-document fileloesnot have an application UID and is displayed on the system
screen with a special icon (a question mark) showing that it is unrecognised. Non-document files are
known asexternal files

Opening Program from its icon in the Extras bar will re-open the Program file last in use.

[] Either create it from the Program editor using the ‘New file’ option in ‘File’ menu, or from the System
screen by moving to the Program icon and using its ‘New File’ option.

Your module names are listed below the Program icon. The Program icon is a speech bubble containing
“OPL” on a grey background. The word ‘Program’ is shown below the icon if there are no modules at all.

The names under the RunOpl icon are those modules which have been translated successfully. The RunOpl
icon is just “OPL” in a speech bubble.

To re-edit an existing OPL program, use the ‘Open file’ option in the Program editor, or move to the
Program icon in the System screen and select the filename from the list.

Use the ‘Copy file’ option in the System screen to copy modules (or translated modules). See the User Guide for
full details. You can also use the ‘Save as’ option in the Program editor itself, to make new copies of an OPL
module.

(CcREATING PROGRAMS [B)

OPL

DELETING MODULES

You can delete an OPL module (or a translated version) as you would any other file. Go to the System screen,
move the highlight on to the file and use the ‘Delete file’ option.

T you delete all of your translated modules, the RunOpl icon will remain on the System screen, with the
word RunOpl beneath it.

‘FILE IS IN USE’

If you see aFile’ is in use’ (‘File or device in use’ on the Series 3c) error message when deleting or copying an
OPL module, the file is open — it is currently being edited in the Program editor. Exit the file and then try again.

If it's the translated file you're trying to delete or copkile’ is in use’ (‘File or device in use’ on the Series 3c)
means that the translated file is currently running. Stop the running program by going to the running program,
then either wait for the program to complete or press Ctrl+Esc (on the Series 5; Psion+Esc on the Series 3c) to
stop it, and then you can try again.

MORE ABOUT RUNNING MODULES

RUNNING FROM THE PROGRAM EDITOR

You can run a module at any time from within the Program editor, by selecting ‘Run program’ (‘Run’ on the
Series 3c) from the ‘Tools’ menu (‘Prog’ menu on the Series 3c). This rutaittstated version of your

program; if you've made changes to the module and haven't translated it again, you must translate the module
again, or the changes have no effect.

‘Run program’ (‘Run’ on the Series 3c) displays a dialog, letting you select the namg énslated module
which you want to run.

RUNNING MODULES FROM THE SYSTEM SCREEN
The names of any successfully translated programs automatically appear in the System screen.

[] Translated modules appear in the System screen with the OPL icon to the left of them. They have the same
name as the Program file from which they were translated with the exte@$i@nadded to their name,
and appear in the same folder as their corresponding Program file. Just move the highlight on to the name
of the translated program you want to run, and select it.

[] Translated modules appear underneath the RunOpl icon. This appears at the right-hand end of the list of

icons (past the Program icon), and is usually off the right-hand edge of the screen. Just move the highlight
on to the name of the translated program you want to run, and press Enter.

Like the Program editor, RunOpl is assigned a keypress - you can press Control-Calc (hold down Control
and press the Calc button) as the short-cut to move to the RunOpl icon, whatever you're doing. (If there is
a running program, this instead mow®ctly to it.)

When an OPL module has been successfully translated and run, you will usually run it from the System screen.
While you're still editing and testing, however, it's quicker to run it from inside the Program editor. This also
positions the cursor for you, if errors occur.

CCREATING PROGRAMS ‘

OPL

STOPPING A PROGRAM WHILE IT’S RUNNING

1o stop a running program, press Ctrl+Esc.(If you’'ve gone away from the running program it will still
be running, and you must first return to it. This is done by either selecting it from the System screen or by
using the list of open files to switch to it. Then Ctrl+Esc will stop it.)

To pause a running program, press Ctrl+Fn+Slt will be paused as soon as it next tries to display something
on the screerPress Ctrl+Fn+Q to let the program resume running.

] 1o stop a running program, press Psion+EsqlIf you've gone away from the running program it will
still be running, and you must first return to it. This is done by pressing Control-Calc and/or selecting it
from under the RunOpl icon in the System screen before pressing Psion-Esc.)

To pause a running program, press Control-Slt will be paused as soon as it next tries to display
something on the scredPress any other key to let the program resume running.

DISPLAYING A STATUS WINDOW

|:| The Series 5 does not have status windows: it has a toolbar instead. You should see the ‘Friendlier
Interaction’ section of the ‘GUI.pdf’ document for details of this.

L A temporary status window is always available while an OPL program is running. Press Psion-Menu to see
it. As you'll see, there are keywords for displaying a status window yourself.

LOOKING AT A RUNNING PROGRAM

i you translate and run a module from the Program editor, the Task list will still allow you to return to the
Program editor, even if the translated program has not finished running. A ‘Running...” message is shown
— you can move the cursor around the program as normal, but you can't edit it.

To return to the running version, either use the Task list or select it from the System screen. It will be in
bold, to show that it is currently running.

L] you translate and run a module from the Program editor, the Control-Word keypress will still return to

the Program editor, even if the translated program has not finished running. A ‘Busy’ message is shown —
you can move the cursor around the program as normal, but you can’t edit it.

To return to the running version, select it from beneath the RunOpl icon in the System screen. It will be in
bold, at the top of the list, to show that it is currently running. Alternatively, press Control-Calc to return to
it.

RUNNING MORE THAN ONE MODULE

If a module is running, and you select a second one from the System screen, the firsborepiaced — both
modules run together, and will be displayed in bold on the System screen. On the Series 5, you can swap
between them using the list of open files, on the Series 3c use Control-Shift-Calc.

MENU OPTIONS WHILE EDITING

While you're typing in the procedure, all the options on the ‘Edit’ menu such as ‘Copy’ (‘Copy text’ on the
Series 3c) and ‘Paste’ (‘Insert text’ on the Series 3c) - are available and can be used as in Word. Refer to the
User Guide for more information.

CCREATING PROGRAMS ‘

OPL

[The menu options available are in general similar to those found in other applications, such as Word. The

‘Tools’ menu has options for translating and running the current program. It also has a ‘Show last error’
option, to re-display an error which prevented successful translation, and a ‘Preferences’ option to
determine the fonts available and whether spaces, tabs and paragraph ends are shown in the Program
editor. It also provides an ‘Infrared’ option (see the User Guide for more details of using infrared). The
‘Create standard files’ option creates files in RAM from ROM files: see the ‘Calling Procedures’ section of
the this document for more details of this.

The ‘Format’ menu provides an ‘Font’ dialog for changing fonts and styles in the Program editor. The
‘Indentation’ option can be used to set the tab width and to turn auto-indentation on and off.

The ‘File’ menu also include ‘Import text’ and ‘Export as text’ options for importing text and exporting as
text. These can be used to convert Program files from Series 3a, 3¢ and Siena to Series 5 and vice versa. To
convert from earlier Program files to Series 5 Program files you need to:

1. Create a new Program document.
2. Import the text using the ‘Import text’ option from the ‘More’ cascade in the ‘File’ menu.

3. Translate and run as usual.

Note that there maybe some incompatibility between Series 5 OPL and earlier versions. See

Appendix A in the ‘Appends.pdf’ document for a summary of these and other documents as
appropriate for further details.

The toolbar on the left-hand side of the screen provides easy access via buttons to four options and also a
clock. The options are ‘Tran’ (‘Translate’), ‘Find’, ‘Find next’ and ‘Go to’. These options are all self-
explanatory, except perhaps for the last: ‘Go to’ gives a list (scrolled if necessary) of all the procedure in
the module. Selecting one of them jumps to the beginning of the specified procedure.

[The menus available are the same as in the Word application, except that the ‘Word’ menu has been

replaced by the ‘Prog’ menu. The ‘Prog’ menu has options for translating and running the current program.
It also has a ‘Show error’ option, to re-display an error which prevented successful translation, and an
‘Indentation’ option, for setting the tab width and to turn auto-indentation on and off in the Program editor.

Unlike Word, the Program editor only ever uses one template for creating new files, called ‘default’. When
you use the ‘New file’ option, the ‘Use template’ line is therefore unavailable; the new file is created using
the ‘default’ template automatically. If you wish to change the ‘default’ template, you can use the ‘Save as
template’ option to replace it with the current filoo not try to swap templates between Word and the

Program editor. ‘Set preferences’ allows you to choose between bold/normal and mono-spaced/
proportional text. It also has options for showing tabs, spaces, paragraph ends, soft hyphens and forced line
breaks.

There is no ‘Password’ option.

The diamond key allows you to switch between a ‘Normal’ and an ‘Outline’ view of your OPL module. The
‘Outline’ view lists only the names of each procedure, for quick navigation around the module.

(CcREATING PROGRAMS [8)

OPL

SUMMARY

[]

Tap the ‘New file’ button on the system screen and select ‘Program’ as the ‘Program’.
Type in your procedure.
Select ‘Translate’ from the ‘Tools’ menu.

When a module translates correctly you are given the option to run it. You can run it again at any time,
either with ‘Run program’ in the ‘Tools’ menu, or directly from the System screen.

Use Ctrl+Esc to stop a running program.

Use Ctrl+Fn+S to pause a program and Ctrl+Fn+Q to restart it again.

Move to the Program icon in the System screen and select the ‘New file’ option.

Type in your procedure.
Select ‘Translate’ from the ‘Prog’ menu.

When a module translates correctly you are given the option to run it. You can run it again at any time,
either with ‘Run’ in the ‘Prog’ menu, or directly from the RunOpl icon in the System screen.

Use Psion-Esc to stop a running program.
Use Control-S to pause a program and any other key to restart it.

Use Psion-Menu to display a status window.

CCREATING PROGRAMS ‘

OPL

VARIABLES & CONSTANTS

Programs can process data in a variety of ways. They may, for example, perform calculations
with numbers, or save and recalbtrings of text (such as names and phone numbers in a data

file).

In all cases, your program must be able to handlealues- different types of numbers, strings,
and so on.

In OPL, there are two ways of handling valuesvariablesand constants Constants are fixed
values (which may be named on the Series 5). Variables are used to store values which may
change - for example, a variable calle may start with the value 3 but later take the value 7.

(VARIABLES & CONSTANTS ‘

OPL

Most procedures begin l@eclaring(creating) variables:
LOCAL x,y,z

LOCAL is the word telling the Psion to create variables, with the names which follow x he@ndz —
separated by commas.

The statementOCAL x,y,z defines three variables callggdy andz. The Psion will recognise these names
whenever you use them in this procedure. (If you used them in another procedure, they wouldn’t be recognised;
the variables are ‘local’ to the procedure in which they are declared.)

These variables are initially given the value 0.

Any variables you wish to use must be declared astiue of a procedure.

Before declaring variables, decide what information they are going to contain. There are different types of
variables for different sorts of values. If you try to give the wrong type of value to a variable, an error message
will be displayed.

You specify the type of each variable when you declare it, by adding a symbol at the end of its name.

e For small whole numbers - for example 6 - usenggger variable Integer variables have a % symbol on
the end, for exampleumber%.
Integer variables can handle numbers only in the range -32768 to +32767. If you try to give an integer
variable a whole number bigger than this, an error message will be displayed. If a variable may have to
handle numbers outside normal integer range, make it a long integer variable.

e For larger whole numbers - for example 10000000 - Usegainteger variable Long integer variables
have an & symbol on the end, for examplenber&.
Long integer variables can handle whole numbers in the range -2147483648 to +2147483647.

e For non-whole numbers - for example 2.5 - ufleating-point variable Floating-point variables have no
symbol on the endprice , for example.
If you know that at some stage in your program your variable will have to handle non-whole num-
bers, like 1.2, use a floating-point, not an integer variablé®therwise you may get unpredictable results.
(There’s more about this later in this section.)

e For very large whole numbers outside long integer range you should also use floating-point variables.

L itis possible to use the full available range of 64-bit floating-point values, i.e. all real numbers with

absolute values in the range 2.2250738585072015E-308 to 1.7976931348623157E+308 and 0. Precision
remains limited to about 15 significant figures in this range. It is also possible to use numbers which have
absolute values in the range 5E-324 to 2.2250738585072015E-308 @ealtedhaly, however the

precision decreases in this range to only 1 significant figure at the lower end. It is possible to enforce the
ranges used by the Series 3c and other earlier Psion machines (see the Series 3c section below) by using
the SETFLAGS command. See the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for details
of this.

Constants for the maximum and minimum values of all variable types are given in Const.oph. See the ‘Calling
Procedures’ section of this document for details on how to use this file and Appendix E in the ‘Appends.pdf’
document for a listing of it.

(VARIABLES & CONSTANTS [11)

OPL

[] Floating-point variables can handle numbers as bitPa#9999999999e99 and as smaltas-99, and 0.

Intermediate results in calculations (which are not displayed on the screen) may exceed this and take any
value in the full range of 64-bit floating point numbers (see the Series 5 section above) .

For text -Are you sure? ,54th , etc. - use atring variable (Pieces of text are callsttingsin OPL.)
String variables have $isymbol on the end - for examplemes$.

To declare a string variable, yowst follow the$ symbol with the maximum length of string you want the
variable to handle in brackets. So if you want to store names up to 15 characters long in thenaanieble
declare it like thisLOCAL name$(15) Strings cannot be longer than 255 characters.

You may want a group of variables, for example to store lists of values. Instead of having to declare separate
variablesa, b, ¢, d ande, you can declararray variablesa(1) toa(5) in one go like this:

LOCAL a%(5) (array of integer variables)
LOCAL a(5) (array of floating-point variables)
LOCAL a$(5,8) (array of string variables)

or

LOCAL a&(5) (array of long integers)

The number in brackets is the number of elements in the arrdyDSAL a%(5) creates five integer variables:
a%(1) ,a%(2) ,a%(3) , a%(4) anda%(b) .

With strings, the second number in the brackets specifies the maximum length of the strings. All the elements in
the string array have the same capacity - for exarh@QI€AL ID$(5,10) allocates memory space for five
strings, each up to 10 characters in length.

OPL does not support two-dimensional arrays.

All numeric variables have zero as their initial value. String variables have a string with no characters in it (a
null oremptystring). Every element in an array variable is also initialised in the appropriate way.

To make it easier to write your programs, and understand them when you read through them at a later date, give
your main variables names which describe the values they hold. For example, in a procedure which calculates
fuel efficiency, you might use variables nanspeed anddistance

All variable names:

e May be entered in any combination of upper and lower case. sPeeD and SpEEd would be considered the
same name.

e Must not use any of the names of keywords, as listed in the ‘Alphabetic Listing’ section of the
‘Glossary.pdf’ document - if you use these you will see a ‘Declaration error’ message when you translate
your module.

(VARIABLES & CONSTANTS [12)

OPL

Other constraints are machine dependent:

* May be up to 32 characters long
e Must start with either an underscore (_) or an alphabetic character, but after that may use any combina-
tion of numbers, letters and the underscore character.

e May be up to 8 characters long

e Must start with an alphabetic character, but after that may use any combination of numbers and letters

The$, & and%symbols are included in the 32 (or 8) characters allowed in variable names, so
V2345678901234567890123456789012% s too long to be a valid variable name, but
V234567890123456789012345678901% is acceptable (on the Series 5).

EXAMPLES

e LOCAL clients$(12),z&(3) declares one string variabldients$, of capacity 12 characters, and
one long integer array variable containing three eleme&f(4,) , z&(2) andz&(3)

e LOCAL AGE%,B5%(10),i declares one integer variabfGE%one string variableB5$, of capacity 10
characters, and one floating-point varialble,

e LOCAL profit93 declares one floating-point variabfepfit93

e« LOCAL x,MAN6%$(4,7) declares one floating-point variabkg,and one string array variablean6$,
containing four elementman6$(1) , man6$(2) , man6$(3) andman6$(4) , each of capacity 7
characters

FOR EFFICIENCY

* Integer variables use less memory than long integer variables, and both use less than floating-point.

e Integer variables are processed faster than floating-point.

GIVING VALUES TO VARIABLES

ASSIGNING VALUES

You canassigna value to a variable directly, like this:
X=5

y=10

This procedure adds two numbers together:

PROC add:
LOCAL x%,y%,z%
X%=569
y%=203

(VARIABLES & CONSTANTS ‘

OPL

2%=x%+y%
PRINT z%
GET

ENDP

add: is the procedure name.

The LOCAL statement defines three variabtés y%andz% all initially with the value 0. PRINT displays the
value ofz%on the screen. You can display the value of any variable like this.

PROC and ENDP define the beginning and end of the procedure as you saw in the previous section.

ASSIGNING VALUES TO STRING VARIABLES
String variables can be assigned text values like this:
a$="some text”

The text you use must be enclosed in double quote characters.

ASSIGNING VALUES TO AN ARRAY VARIABLE

If you declarea%(4) , assign values to each of the elements in the array likeathid:)=56 , a%(2)=345 and
so on. Similarly for the other variable typa¢l)=.0346 , a&(3)=355440 ,a$(10)="name”

ARITHMETIC OPERATIONS
You can use thesgperators

+ plus

- minus or make negative
/ divide

* multiply

*x raise to a power

% percentage

Operators have the same precedence as in the Calc application. For eXabip®8 s treated as
3+(51.3/8) , not(3+51.3)/8 . For more information on operators and precedence, see Appendix B.

VALUES FROM FUNCTIONS

There are two kinds of keyworccemmandsandfunctions

A command is just a straightforward instruction to OPL to do some particular thing. PRINT and PAUSE,
for example, are commands.

e Afunction is just like a command but it alsgurnsa value which you can then use.

GET is, in fact, a function; it waits for you to press a key on the keyboard, and then returns a value which
identifies the key which was pressed. (In previous example programs, the value returned by GET was ignored,
as GET was being used to provide a pause while you read the screen. This is a common use of the GET
function.)

(VARIABLES & CONSTANTS ‘

OPL

The number returned by GET will always be a small whole number, so you might store it away in an integer
variable, like this:

a%=GET

There is more about the GET function later in this section.

You can assign a value to a variable witheapression that is, a combination of numbers, variables, and
functions. For example:

zZ=x+y/2 gives thez the value ok plus the value of/2 .
Z=x*y+34.78 givesz the value ok timesy, plus34.78 .
z=x+COS(y) givesz the value ok plus the cosine of.

COS is another OPL function. Unlike the GET function, COS requires a value or variable to work with. As you
can see, you put this in brackets, after the function name. Values you give to functions in this way are called
argumentdo the function. There is more information about arguments in the next section.

All of the above ar@perationsusing the variables andy - assigning the result tband not actually affecting
the value ok ory.

The ways you can change the values of variables fall into these groups:

e Arithmetic operations, such as multiplication or addition - for exazgsales+costs or z=y%*(4-
X%0)
e Using one of the OPL functions, for examptSIN(P1/6)

or

e Using certain keywords like INPUT or EDIT which wait for you to type in values from the keyboard.

In expressions, variables can refer to themselves. For example:
2%=z%+1 (make the value af%one greater than its current value)

X%=x%/4+y (make the value of%a quarter of its current value, plus the valug)of

In an OPL program, numbers (and strings in quote marks) are sometimexcafeghtsin practice, you will
use constants without thinking about them. For example:

x=0.32
X%=569
X&=32768
x$="string”
x(1)=4.87

(VARIABLES & CONSTANTS [18)

OPL

OPL can also represem¢xadecimatonstants. Integers specified in hexadecimal must be precedekidnda
long integers by a & For example, $f or &80000000. This is explained under the HEX$ entry in the
‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

Exponential notation may be useful for very large or very small number< (dsgital or lower case) to mean
“times ten to the power of” - for example, 3.14E7 is 318! (31400000), while 1E-9 isx1L.0° (0.000000001).

[] The CONST command may be used to dedanstantsThis makes it possible to assign a name to a constant

value so it may be used throughout the module. This has the advantage of making it possible to change just
one statement rather than many to change the value of a single constant. See the ‘Calling Procedures’ section
of this document for more details of how to do this.

When calculating an expression, OPL uses the simplest arithmetic possible for the numbers involved. If all of

the numbers are integers, integer arithmetic is used; if one is outside integer range, but within long integer range,
then long integer arithmetic is used; if any of the numbers are not whole numbers, or are outside long integer
range, floating-point arithmetic is used.

This has the benefit of maximising speed, but you must beware of calculations going out of the range of the type
of arithmetic used. For example, X*200*300 both200 and300 are integers, so integer arithmetic is used

for speed (even thougkis a floating-point variable). However, the result, 60000, cannot be calculated because

it is outside integer range (32767 to -32768), so an ‘Overflow’ error is produced.

You can get around this by using the INT function, which turns an integer into a long integer, without changing
its value. If you rewrite the previous exampleXadNT(200)*300 , OPL has to use long integer arithmetic,

and can therefore give the correct result (60000). (If you understand hexadecimal numbers, you can instead
write one of the numbers as a hexadecimal long intege2@gwould becom&C8))

Integer arithmetic uses whole numbers onlyFor example, if/%is 7 andk%is 4,y%/x% gives 1. However,

you can use the INTF function to convert an integer or long integer into a floating-point number, forcing
floating-point arithmetic to be used for exampMTF(y%)/x% gives 1.75This rule applies to each part of
an expression- e.g.1.0+2/4 works out a4.0+0 (=1.0), while1+2.0/4 works out ad4+0.5 (=1.5).

If one of the integers in an all-integer calculation is a constant, you can instead write it as a floating-point
number. 7/4 gives 1, but 7/4.0 gives 1.75.

If a$ is“down” andb$ is“wind” , then the statemen$=a$+b$ means$ becomesdownwind”
Alternatively, you could give$ the same value with the statemeft“down”+"wind”

When adding strings together, the result must not be longer than the maximum length you declared e.g. if you
declared.OCAL a$(5) thena$="first’+"second” would cause a ‘String is too long’ error to be
displayed.

Most operators do not work on strings. To cut up strings, use string functions like MID$, LEFT$ and RIGHTS$,
explained in the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document. You need them to extract even a
single character yocannot, for example, refer to the fourth charactea${7) asa$(4) .

PRINT is one of the most useful OPL commands. Use it to display any combination of text messages and the
values of variables.

(VARIABLES & CONSTANTS [16)

OPL

WHERE THE CURSOR GOES AFTER A PRINT
In general, each PRINT statement ends by moving to a new line. For example:
A%=127 :PRINT “A% is”
PRINT a%
would display as
A% is
127
You can stop a PRINT statement from moving to a new line by ending it with a semicolon. For example:
A%=127 :PRINT “A% is”;
PRINT a%
would display as
A% is127
If you end a PRINT statement with a comma, it stays on the same line, but displays an extra space. For example:
A%=127 :PRINT “A% is”,
PRINT a%
would display as
A% is 127

DISPLAYING A LIST OF THINGS

You can use commas or semicolons to separate things to be displayed on one line, instead of using one PRINT
statement for each. They have the same effect as before:

A%=127 :PRINT “A% is",a%
would display as

A% is 127
while

user$="Fred”

PRINT “Hello”,user$;"!"
would display as

Hello Fred!

DISPLAYING THE QUOTE CHARACTER

Each string you use with PRINT must start and end with a quote character. Inside the string to display, you can
represent the quote character itself by entering it twicRNT “Press “” key” displays a$ress “
key , while PRINT “”” displays a single quote character.

(VARIABLES & CONSTANTS ‘

OPL

If you want a program to be reusable, it often needs to be able to accept different sets of information each time
you use it. You can do this with the INPUT command, which takes numbers and text typed in at the keyboard
and stores them in variables.

For example, this simple procedure converts from Pounds Sterling to Deutschmarks. It asks you to type in two
numbers - the number of Pounds Sterling, and the current exchange rate. You can edit as you type the numbers -
the Delete key, for example, deletes characters, and Esc clears everything you've typed. Press Enter when
you've finished each number. The values are assigned to the vapabitets andrate , and the result of the
conversion is then displayed:

PROC exch:
LOCAL pounds,rate
AT 1,4
PRINT “How many Pounds Sterling?”,
INPUT pounds :REM value from keyboard
PRINT “Exchange rate (DM to £1)?”,
INPUT rate :REM value from keyboard
PRINT “=",pounds*rate,“Deutschmarks”
GET

ENDP

Here PRINT is used to show messages (often cpheahptd before the two INPUT commands, to say what
information needs to be typed in. In both cases the PRINT command ends in a comma, which displays a single
space, and keeps the cursor position on the same line. Without the commas, the numbers you type to the INPUT
commands would appear on the line below.

The value entered to an INPUT command must be of the appropriate kind for the variable which INPUT is
setting. If you enter the wrong type (for example, if you enter the gtireg for the floating-point variable
rate), INPUT will show a? prompt, and wait for you to enter another value.

When using INPUT with a numeric variable (integer, long integer or floating-point), you can enter any number
within the range of that type of variable. Note that if you enter a non-whole number as the value for an integer
variable, it will take only the whole number part (so e.g. if you enter 12.75 for an integer variable, it will be set
to 12).

The REM command lets you add comments to a program to help explain how it works. Begin the comment with
the word REM (short for ‘remark’). Everything after the REM command is ignored.

If you put a REM command on the end of a line, the colon you would normally put before it is optional. For
example, you could use either of these:

CLS :REM Clears the screen
or
CLS REM Clears the screen

This positions the cursor or your message at the co-ordinates you specify. Use the command like this:
AT column%,row%
wherecolumn% androw% give the character position to use.

AT 1,1 positions the cursor to the top left corner.

(VARIABLES & CONSTANTS [18)

OPL

SINGLE KEYPRESSES

In addition to using INPUT to ask for values, your program can ask for single keypresses. Use one of these
functions:

e GET waits for a keypress and returns the key pressed.

* KEY returns a key if any was pressed, but doesn’t wait for one.

Every separate letter, number or symbol has a number which represents it, chlestter codeThe full list

of character codes - tlgharacter set for the Series 5 may be found in Appendix D and for the Series 3c is
included as an appendix to the User Guide. GET and KEY return the character code of the key pressed for
example, ifA were pressed, these functions would return the value 65. KEY returns 0 if no key was pressed.

KEY$ and GET$ work in the same way as KEY and GET, except that they return the key pressed as a string, not
as a character code:

e GETS$ waits for a keypress and returns the key pressed, as a string.

« KEY$returns a key if any was pressed, but doesn’t wait for one. KEY$ returns a null string if no key was
pressed.

Unlike INPUT, these functions do not display the key pressed on the screen, and do not wait for you to press
Enter.

EXAMPLE USING GET$

PROC kchar:
LOCAL k$(1)
PRINT “Press a key, A-Z:"
k$=GET$
PRINT “You pressed”,k$
PAUSE 60

ENDP

Single keypresses are often useful for making decisions. A program might, for example, offer a set of choices
which you choose from by typing the word’s first letter, like this:

Add (A) Erase (E) or Copy (C) ?

Or it might ask for confirmation of a decision, by displayingEs or NO? message and waiting until Y or N
is pressed.

See the ‘Loops and Branches’ section of this document for details of how to identify which key is pressed.

MODIFIER KEYS

If you need to check for the Shift, Control, Psion (on the Series 3c and Siena only) Fn (Series 5 only) keys and/
or Caps Lock being used, see the description of the KMOD function, in the ‘Alphabetic Listing’ section of the
‘Glossary.pdf document.

CVARIABLES & CONSTANTS ‘

OPL

SUMMARY

Declare variables with one or more LOCAL statements in the line after PROC:

* Integervariables - for example year%

e Floating-point variables - for example price

e String variables - for example name$(12) where the maximum length is given in the brackets
e Long integervariables - for example profit&

Variables will be floating-point unless you add a symbol to the end of the variable name.

« Array variables - for example prices%(4) or clients$(5,12) where the first number inside the brackets
specifies the number of elements, and the second number in the brackets, in the case of string arrays,
specifies the maximum length.

All identifiers may have a maximum length of 32 characters (8 on the Series 3c).

Assign values to variables:
e Expressions - for example x=5.5/y , profit=x-y
e INPUT command - for example INPUT a$

e ‘Add’ strings - for example a$=“MR"+names$

REM allows you to add comments to a program.

AT positions the cursor.

GET and KEY return the key pressed as a character code.

GETS$ and KEY$ return the key pressed as a single-character string.
GET and GET$ wait until a key is pressed, KEY and KEY$ do not.

(VARIABLES & CONSTANTS ‘

OPL

LOOPS & BRANCHES

The programs in the two previous sections consist of a number of instructions which are ex-
ecuted one by one, from start to finish.

However, there are a number of other ways a program can proceed:
» Repeating a set of instructions (called loops)
« Doing one set of instructions or another (called IF statements)

e Jumping from one line of your program to another

CLOOPS & BRANCHES ‘

OPL

REPEATING INSTRUCTIONS (LOOPS)

The DO...UNTIL and WHILE...ENDWH commands as&uctures- they don’t actually do anything to your
data, but control the order in which other commands are executed:

« DO...UNTIL repeats a set of instructions until a certain condition is true.

* WHILE...ENDWH repeats a set of instructions so long as a certain condition is true.
There is a testonditionat the end of the DO...UNTIL loop, and at the beginning of the WHILE...ENDWH loop.

DO...UNTIL

PROC test:
LOCAL a%
a%=10
DO
PRINT “A=";a%
a%=a%-1
UNTIL a%=0
PRINT “Finished”
GET
ENDP

The instructiorDOsays to OPL:

“Execute all the following instructions until an UNTIL is reached. If the condition following UNTIL is not met,
repeat the same set of instructions until it is.”

The first time through the loop26=10. 1 is subtracted froafq so thaa%is 9 when the UNTIL statement is
reached. Sinca%isn’t zero yet, the program returns to DO and the loop is repeated.

a%goes down to 8, and again it fails the UNTIL condition. The loop therefore repeats 10 tima%odotis
equal zero.

Whena%equals zero, the program continues with the instructions after UNTIL.

The statements in a DO...UNTIL loop are always executed at least once.

WHILE...ENDWH

PROC test2:
LOCAL a%
a%-=10
WHILE a%>0
PRINT “A=";a%
a%=a%-1
ENDWH
PRINT “Finished”
GET
ENDP

The instructions between the WHILE and ENDWH statements are executed only if the condition following the
WHILE is true - in this case #%is greater than 0.

(LOOPS & BRANCHES ‘

OPL

Initially, a%=10 and sa\=10 is displayed on the screatsis then reduced to 8%is still greater than zero, so
A=9 is displayed. This continues unfik1 is displayeda%is then reduced to zero, andaished is
displayed.

Unlike DO...UNTIL, it's possible for the instructions between WHILE and ENDWH not to be executed at all.

EXAMPLE USING WHILE...ENDWH

PROC newkey:
WHILE KEY :ENDWH
PRINT “Press a new key.”
ENDP

This procedure ignores any keys which may already have been typed, then waits for a new keypress.

KEY returns the value of a key that was presse@, ibno key has been press&iiHILE KEY :ENDWHreads
any keys previously pressed, one by one, until they have all been reldBareturns zero.

CHOOSING BETWEEN INSTRUCTIONS

In a program, you might have several possible cagésnay be 1, or it may be 2, or 3...) and want to do
something different for each one (if it's 1, do this, but if it's 2, do that...). You can do this with the IF...ENDIF
structure:

IF condition1

do these statements
ELSEIF condition2

do these statements
ELSEIF condition3

do these statements

ELSE
do these statements
ENDIF

These lines would deither

* the statements following the IF line bnditionlis met)

or

e the statements following one of the ELSEIF lines (if oneowfdition2 condition3.. is met)

or

« the statements following the ELSE line (if nonecohditionl, condition2 condition3.. have been met).
and then continue with the statements after the ENDIF.

You can cater for as many cases as you like with ELSEIF statements. You don't have to have any ELSEIFs.
There may be either one ELSE statement or none; you do not specify conditions for the ELSE statement.

Every IF in your program must be matched by an ENDIF- otherwise you'll see an error message when you
try to translate the module. The structure must start with an IF and end with an ENDIF.

CLOOPS & BRANCHES ‘

OPL

“NESTING” LOOPS - THE 'TOO COMPLEX" MESSAGE

You can have up to eight DO...UNTIL, WHILE...ENDWH and/or IF...ENDIF structures nested within each
other. If you nest them any deeper, a ‘Too complex’ error message will be displayed.

EXAMPLE USING IF

PROC zcode:
LOCAL g%
PRINT “Are you going to press Z?”
g%=GET
IF g%=%Z OR g%=%z
PRINT “Yes!”
ELSE
PRINT “No.”
ENDIF
PAUSE 60
ENDP

% OPERATOR

The program checks character codes witttloperator %oareturns the code @f, %Zthe code oZ and so on.
Using %Ais entirely equivalent to using 65, the actual codé\fdyut it saves you having to look it up, and it
makes your program easier to follow.

Be careful not to confuse character codes like these with integer variables.

OR OPERATOR

OR lets you check for either of two conditions. OR is an exampldagfieal operator There is more about
logical operators later in this section.

EXAMPLE USING DO...UNTIL AND IF

PROC testny:
DO
g$=UPPERS$(GET$)
UNTIL g$="N" OR g$="Y" REM wait fora Y or N

IF g$="N" REM was it an N?
... REM ‘N’ pressed
ELSE REM must have been a'Y
... REM 'Y’ pressed
ENDIF
ENDP

This procedure checks for a ‘Y’ or ‘N’ keypress. You'd put your own code in the IF statement, whenas
been used.

ARGUMENTS TO FUNCTIONS

Some functions, as with commands like PRINT and PAUSE, require you to give a value or values. These values
are calledargumentsThe UPPERS$ function needs you to specify a string argument, and returns the same string
but with all letters in upper case. For examplBEPER(*12.+aBcDeF”) returnsl2.+ABCDEF.

(LOOPS & BRANCHES ‘

OPL

Since GETS$ returns a string, you can use this as the argument for URFEFRER$(GETS$) waits for you to
press a key, because of the GET$; the UPPERS$ takes the string returned and, if it's a letter, returns it in upper
case. This means that you can checkffarithout having to check for as well.

The test condition used with DO...UNTIL, WHILE...ENDWH and IF...ENDIF can be any expression, and may
include any valid combination of operators and functions. Examples:

Condition Meaning

x=21 does the value of equal 21? (Note - as this is a test condition, it c¢Rssignx
the value 21)

a%<>b% is the value o&%not equal to the value &P

X%=(y%+2%) is the value ok%equal to the value gf6+z% (does not assign the valfb+z%to
xX%.

The expressions actually returtogical value- that is, a value meaning either ‘True’ or ‘False’. Any non-zero
value is considered ‘True’ (to return a ‘True’ value, OPL uses -1), while zero means ‘Falsea%s & and
b%is 7, the expressica>b%will return a zero value, sin@bis not greater thah%

[] constants for ‘“True’ and ‘False’ are given in Const.oph. See the ‘Calling Procedures’ section of this

document for details of how to use this file and Appendix E in the ‘Appends.pdf’ document for a listing of
it.

These are the conditional operators:

< less than <= lessthan or equal to
> greater than >= greater than or equal to
= equal to <> notequal to

The operators AND, OR and NOT allow you to combine or change test conditions. This table shows their
effects. €1 andc2 represent conditions.)

Example Result Integer returned
¢l AND c2 True if bothcl andc2 are true -1
False if eithecl orc2 are false 0
c1 OR c2 True if eithercl orc2 is true -1
False if bothcl andc2 are false 0
NOT c1 True ifcl is false -1
False ifcl is true 0

However, AND, OR and NOT becorb@&wise operators something very different from logical operators -
when used exclusively with integer or long integer value$f you uselF A% AND B% , the AND acts as a
bitwise operator, and you may not get the expected result. You would have to rewritd Fhig/e&s>0 AND
B%<>Q (Operators, including bitwise operators, are discussed further in Appendix B in the ‘Appends.pdf’
document.)

(LooPs & BRANCHES [25)

OPL

JUMPING TO A DIFFERENT LINE

JUMPING OUT OF A LOOP: BREAK

The BREAK command jumps out of a DO...UNTIL or WHILE...ENDWH structure. The line after the UNTIL
or ENDWH statement is executed, and the lines following are then executed as normal. For example:

DO

UNTIL a=b [pcyj
X%=3

JUMPING TO THE TEST CONDITION: CONTINUE

The CONTINUE command jumps from the middle of a loop to its test condition. The test condition is either the
UNTIL line of a DO...UNTIL loop or the WHILE line of a WHILE...ENDWH loop. For example:

HILE a<b

IF a=C
CONTINU
ENDIF

ENDWH

JUMPING TO A ‘LABEL": GOTO

The GOTO command jumps to a specifiadel. The label can be anywhere in the same procedure (after any
LOCAL or GLOBAL variable declarations). In this example, when the program reaches the GOTO statement, it
jumps to the labedxit:: | and continues with the statement after it.

GOTO exit

PRINT “MISS THIS LINE”
PRINT “AND THIS ONE”
exit::

The two PRINT statements are missed out.

Labels themselvesiust end in a double colon. This is optional in the GOTO statement -GOTO exit::
andGOTO exit are OK.

The jump to the label always happens - it is not conditional.

Don’t use GOTOs instead of DO...UNTIL or WHILE...ENDWH, as they make procedures difficult to
understand.

(LOOPS & BRANCHES ‘

OPL

VECTORING TO A LABEL: VECTOR/ENDV

VECTOR jumps to one of a list of labels, according to the value in an integer variable. The list is terminated by
the ENDV statement. For example:

VECTOR p%
FUNCA,FUNCX
FUNCR
ENDV
PRINT “p% was not 1/2/3” :GET :STOP

FUNCA::
PRINT “p% was 1" :GET :STOP

FUNCX::
PRINT “p% was 2" :GET :STOP

FUNCR::
PRINT “p% was 3" :GET :STOP

Here, ifp%is 1, VECTOR jumps to the labEUNCA:: . If it is 2, it jumps tdFUNCX::, and if 3,FUNCR::. If
p%is any other value, the program continues with the statement afteNiD¥statement.

STOPPING A PROGRAM

The above example introduces the STOP command. This stops a running program completely, just as if the end
of the program had been reached. In a module wsthgle procedure, STOP has the same effect as using
GOTO to jump to a label above the final ENDP.

UNTIL O, WHILE 1

Zero and non-zero are logical values meaning ‘False’ and ‘True’ respectidf¢RL O andWHILE 1

therefore mean ‘do forever’, since the condition O is never ‘True’ and the condition 1 is always ‘True’. Use
loops with these conditions when you need to check the real condition somewhere in the middle of the loop.
When the real condition is met, you can BREAK out of the loop.

For example:

PROC test:
WHILE 1
... REM some other lines here
IF KEY :BREAK :ENDIF
... REM some other lines here
ENDWH
ENDP

This example uses the KEY command. KEY returns 0 if no key has been pressed. When a key is pressed, KEY
returns a non-zero value which counts as ‘True’, and the BREAK is executed.

(LOOPS & BRANCHES ‘

OPL

SUMMARY

DO
statements
UNTIL condition

WHILE condition
statements
ENDWH

IF condition
statements
[ELSEIF condition
statements |
[ELSE
statements |
ENDIF

VECTOR int%
labell, label2
label3...

ENDV

labell::

label2::

label3::

GOTO label jumps tolabel::

BREAKgoes to the first line after the end of the loop - the line following the UNTIL or ENDWH line.
CONTINUEgoes to the test condition of the loop - the UNTIL or the WHILE line.

STOPstops a running program completely.

(LOOPS & BRANCHES ‘

OPL

CALLING PROCEDURES

The programs discussed in earlier sections have involved a single procedure in each module.
However, it is possible to have more than one procedure in a module.

The top procedure is always the one which is executed, but it may also call, by name, any of the
other procedures in the module. This procedure may in turn return a value, for example the
result of a calculation, to the calling procedure.

Variables can be made available to all the procedures in a module by using the GLOBAL rather
than LOCAL definition.

CCALLING PROCEDURES ‘

OPL

USING MORE THAN ONE PROCEDURE

If you wanted a single procedure to perform a complex task, the procedure would become long and complicated.
It is more convenient to have a module containing a number of procedures, each of which you can write and edit
separately.

Many OPL modules are in fact a set of procedures linked up - each procedure doing just one job (such as a
certain calculation) and then passing its results on to other procedures, so they can do other operations:

Controlling
Procedure asking for procedure, pasting
values/decisions values and

receiving results

4J back
procedure J L module

P 1 \Various

procedure < procedures
performing
calculations,
procedure < accessing files and
returning

OPL is designed to encourage programs written in this way, since:

. You can store all the procedures which make up a program in the same module file

and

. One procedure catall, that is run, another.

MODULES CONTAINING MORE THAN ONE PROCEDURE
You can have as many procedures as you like in a module. Each must begin with PROC and end with ENDP.

When you run a translated module it is always the first procedure, at the top of the module, which is
actually run. When this finishes, the module stops; any other procedures in the file are only run if and when
they are called.

Although you can use any name you want, it's common to give the first procedure a nastertike

Procedures which run on their own should be written and translated as separate modules, otherwise you won't be
able to run them.

CALLING PROCEDURES

To run another procedure, simply give the name of the procedure (with the colon). For example, this module
contains two procedures:

PROC one:
PRINT “Start”
PAUSE 40
two: REM calls procedure two:
PRINT “Finished”
PAUSE 40
ENDP

CCALLING PROCEDURES ‘

OPL

PROC two:
PRINT “Doing...”
PAUSE 40
ENDP

Running this module would run procedare: , with this effect:Start is displayed; after a PAUSE it calls
two: , which displayDoing... ; after another PAUSEvo: returns to thene: procedurepne: displays
Finished ; and after a final PAUSEnNe: finishes.

[] Remember the ‘Go to’ button on the toolbar allows you to jump between procedures, for quick navigation

around the module.

[] Remember the diamond key allows you to switch between a ‘Normal’ and an ‘Outline’ view of your OPL

module. The ‘Outline’ view lists only the names of each procedure, for quick navigation around the
module.

Calling procedures can be used to:
. Structure your programs more clearly so they're easier to adapt after you've written them

. Use the same procedure in different programs - say, to perform a certain common calculation.

For example, when your program asks you “Do this or do that?”, make two procedure callsthisitheior
that: procedure - depending on what you reply, for example:

PROC input:
LOCAL a$(1)
PRINT “Add [A] or Subtract [S]?:",
a$=UPPERS$(GET$)

IF a$="A"
add: REM first procedure
ELSEIF a$="S"
subtract: REM second procedure
ENDIF
ENDP

To make full use of procedure calls, you must be able to communicate values between one procedure and
another. There are two ways of doing tlgisbal variablesandparameters

Values can be passed from one procedure to another bypasengeters They look and act very much like
arguments to functions.

In the example below, the procedymice: calls the proceduriax: . At the same time as it calls it, it passes
a value (in this case, the value which INPUT gave to the vanatitethe parametgy named in the first line of
tax: . The parametap is rather like a new local variable insitde: , and it has the value passed wieen

is called. (Thaax: procedure isiot changing the variabbe.)

Thetax: procedure displays the valuexoplus 17.5% tax.

PROC price:
LOCAL x
PRINT “ENTER PRICE”,

(cALLING PROCEDURES | 81)

OPL

INPUT x
tax:(x) REM Passes the value of x to p
GET

ENDP

PROC tax:(p)
PRINT “PRICE INCLUDING TAX =",p*1.175
ENDP

. In thecalled procedure, follow the procedure name by the names to be used for the parameters, enclosed
by brackets and separated by commas - for example proc2:(cost,profit).

The parameter type is specified as with variables - for exapfaea floating-point parametep%for an
integer,p& for a long integem$ for a string. You can’t have array parameters.

. In thecalling procedure, thealuesfor the parameters are given in brackets, in the right order and sepa-
rated by commas, after the colon of the called procedure - for example proc2:(60,30).

The values passed as parameters may be the values of variables, strings in quotes, or constants. So a call might
becalc:(a$,x%,15.8) and the first line of the called procedd@®BOC calc:(name$,age%,salary)

In the called procedure, you cannot assign values to parameter$or example, ip is a parameter, you
cannot use a statement lige10.

You will see a ‘“Type mismatch’ error displayed if you try to pass the wrong type of value to a parameter
for example 45 to(a$) .

In the following example, the second procedar®: has two parameters:
. The value of the price variable x is passed to the parameter p1l.

. The value of the tax rate variable r is passed to the parameter p2.
tax2: displays the price plus tax at the rate specified.

PROC price2:
LOCAL x,r
PRINT “ENTER PRICE”,
INPUT x
PRINT “ENTER TAX RATE”,
INPUT r
tax2:(x,r)
GET
ENDP

PROC tax2:(p1,p2)
PRINT pl+p2 %
ENDP

This uses th&symbol as an operatopi+p2 % meangl plusp2 percent ofpl. Note the space before the
% without it, p2%would be taken as representing an integer variable.

See Appendix B in the ‘Appends.pdf’ document for more information abogbtperator.

(cALLING PROCEDURES | 82)

OPL

RETURNING VALUES

In the following example, the RETURN command is used to return the valuplo$ tax at percent, to be
displayed inprice3: . This is very similar to the way functions return a value.

Thetax3: procedure calculates, but doesn’t display the result. This means it can be called by other procedures
which need to perform this calculation but do not necessarily need to display it.

PROC price3:
LOCAL x,r

PRINT “ENTER PRICE”,
INPUT x

PRINT “ENTER TAX RATE”,
INPUT r
PRINT “PRICE INCLUDING TAX ="tax3:(X,r)

GET
ENDP

PROC tax3:(p1,p2)
RETURN pl+p2 %
ENDP

Only one value may be returned by the RETURN command.

The name of a procedure which returns a value must end with the correct idefitiierstring,%for integer,

or & for long integer. To return a floating-point number, it should end with none of these symbols. For example,
PROC abcd$: can return a string, whilBROC counter%: can return an integer. In this exampes$:

returns a string:

PROC refname:
LOCAL a$%$(30),b$(2)
PRINT “Enter reference and name:”,
INPUT a$
b$=ref$:(a$)
PRINT “Ref is:",b$
GET
ENDP

PROC ref$:(name$)

RETURN LEFT$(name$,2)

REM LEFT$ takes first 2 letters of name$
ENDP

If you don't use the RETURN command, a string procedure returns the null tripngdther (numeric) types
of procedure return zero.

CCALLING PROCEDURES ‘

OPL

You can only return one value with the RETURN command. If you need to pass back more than one value, use
global variables.

Instead of declaringOCAL x%,name$(5) declareGLOBAL x%,name$(5). The difference is that:
. Local variables are valid only in the procedure in which they are declared.

. Global variables can also be used in any procedures (including those in loaded modules) called by the
procedure in which they are declared.

So this module would run OK:

PROC one:
GLOBAL a%
PRINT a%
two:

GET

ENDP

PROC two:
a%=2 REM Sees a% declared in one:
PRINT a%

ENDP

When you run this, the value 0 is displayed first, and then the value 2.

You would see an ‘Undefined externals’ error displayed if you used LOCAL instead of GLOBAL to dedlare
since the proceduttevo: wouldn'’t recognise the variabds In general, though, it is good practice to use the
LOCAL command unless you really need to use GLOBAL.

A local declaration overrides a global declaration in that procedure G@BAL a%was declared in a
procedure, which called another procedure in whieiCAL a%was declared, any modifications to the value of
a%in this procedure would not effect the value of the global varizifle

You can effectively pass as many values as you like back from one procedure to another by using global
variables.Any modifications to the value of a variable in a called procedure are automatically registered in
the calling procedure For example:

PROC start:
GLOBAL varone,vartwo
varone=2.5
vartwo=2
op:
PRINT varone,vartwo
GET

ENDP

PROC op:
varone=varone*2
vartwo=vartwo*4

ENDP

This would display 8

(cALLING PROCEDURES | 84)

OPL

If, perhaps because of a typing error, you use a name which is not one of your variables, no error occurs when
you translate the module. This is because it could be the name of a global variable, declared in a different
procedure, which might be available when the procedure in question was called. If no such global variable is
available, an ‘Undefined externals’ error is shown when the translated module is run. This also displays the
variable name which caused the error, together with the module and procedure names, in this format: ‘Error in
MODULE\PROCEDUREVARIABLE.

On the Series 5, OPL allows youiteludeheader filesvhich may include definitions gifrocedure prototypes
andconstantsbutnot procedures themselves. (Constants and procedure prototypes may also be declared at the
top of modules themselves, although it is tidier to put them into a header file. Indeed, including a file is logically
identical to replacing the INCLUDE statement by the file’s contents.)

A header file is included in a module using the INCLUDE command at the beginning of the module, outside any
procedure. For example,

INCLUDE “Header.oph”

The filename of the header may or may not include a path. If it does include a path, then OPL will only scan the
specified folder for the file. However, the default path for INCLUDESigsstem\Opl\ , so when INCLUDE

is calledwithout specifying a patfOPL looks for the file firstly in the current folder and then in

\System\Opl\ in all drives from Y: to A: and then in Z:, excluding any remote drives.

Commonly the statement,
DECLARE EXTERNAL

will follow the INCLUDE declaration. DECLARE EXTERNAL causes tinanslator to report ‘Undefined
externals’ errors if any variables or procedures are used before they are declared, rather than leaving this until
runtime.

Procedure prototypes are declared with the command EXTERNAL. For example,
EXTERNAL Procl:

A prototype is a declaration of the name of the procedure along with the arguments it takes. This amounts to the
same as PROC declaration with the PROC keyword, which declares the start of a procedure, omitted. The
procedure may then be referred to before it is defined when the DECLARE EXTERNAL statement has been
made. As well as reporting ‘Undefined externals’ error at translate-time, the other advantage of using the
DECLARE EXTERNAL and EXTERNAL statements is that it allows parameter type-checking to be performed

at translate-time rather than at runtime, and also provides the necessary information for the tranekioe to

numeric argument types, thus avoiding ‘Type violation’ errors at runtime. Hence a ‘Type violation’ error does

not result in the following example, even though @oes not precede the 2 passed to the procédarg

DECLARE EXTERNAL
EXTERNAL two:(long&)
PROC one:

two:(2)
ENDP

PROC two:(long&)

ENDP

The samesoercionoccurs as when calling the built-in keywords.

(cALLING PROCEDURES | 85)

OPL

Constants are declared with the command CONST. For example,
CONST KConstant=1.0

Constants are treated as literals, not stored as data. They alggidtzalescopeand once a value is assigned to
them, it cannot be altered within the same program. The declarations must beutsatkeany procedure. A
constant’s name, just like that of a GLOBAL or LOCAL variable, has the normal type-specification indicators
(% &, $ or nothing for floats). By convention, all constants are named with a leiddindistinguish them from
variables.

Const.ophis the standard header file in the ROM. It provides many of the standard constant declarations
required for effective and maintainable OPL programming on the Series 5. For convenient reference, the
contents Const.oph is reproduced in full in Appendix E. This and other files stored in the ROM (for example,
OPX header files: see the ‘OPX.pdf’ document) may be created in RAM by using the ‘Create standard files’
option in the ‘Tools’ menu in the Program editor.

See also the *Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

Call a procedure by stating its name, including the colon.

Pasgparameterdo a procedure by following the procedure call with the values for the parameters, e.g.
calc2:(4.5,32) . In the called procedure, follow the procedure name with the parameter nameR@Q.
calc2:(mod,div%)

To make variables declared in one procedure accessible to called procedures, declare the variables with
GLOBAL instead of LOCAL.

[] INncLUDE may be used tmcludeaheader filewhich contains constant definitions and procedure
prototypes.

DECLARE EXTERNAL may be used to
» cause the translator to report an error if any variables or procedures are used before they are declared
« allow parameter type-checking to be performed at translate-time rather than at runtime

e provide the necessary information for the translator to coerce numeric argument types.
Procedure prototypeare made with the EXTERNAL command.

Constantdefinitions are made with the CONST command.

(cALLING PROCEDURES | 86)

OPL

INDEX

SYMBOLS

% operator 24
? prompt 18

A

arguments 15, 24
arithmetic operators 14
array variables 12

assign, value to variable 13
AT 18

B

bold text
while editing 8
BREAK 26

C

calling procedures 30
case of OPL keywords 2
character codes

with GET,GET$,KEY,KEY$ 19

coercion 35
commands

and functions 14
conditional operators 25
conditions, in loops 22
CONST 36
Const.oph 36
constants 15, 35
CONTINUE 26
Control-Calc 6, 7
Control-S 7
Control-Shift-Calc 7
Control-Word 4, 7
copying modules 5

‘Create standard files’ option 8, 36

Ctrl+Esc 7
Ctrl+Fn+S 7

D

‘Declaration’ error 12
DECLARE EXTERNAL 35
declaring variables 11
LOCAL and GLOBAL 34
‘default’ template 8

deleting modules 6
diamond

key 8
division problems 16
DO...UNTIL 22
documents 5

E

ELSE 23

ELSEIF 23

ENDIF 23

ENDP 2

ENDV 27

Esc key, in INPUT, EDIT 18
‘Export as text’ option 8
expressions 15
EXTERNAL 35

F

false 25
‘File isin use’ 6
floating-point variables 11
range 11, 12
‘Format’ menu 8
functions
and commands 14

G
GET 19
GET$ 19
GLOBAL 34
Global variables
returning values 34
global variables
‘Undefined externals’ 35
‘Go to’ option 8
GOTO 26

H

header files 35
hexadecimal 16

IF...ENDIF 23
‘Import text’ option 8
INCLUDE 35
indentation 3, 8
‘Infrared’ option 8

OPL

initial values of variables 12
INPUT 15, 18
integer arithmetic 16
integer variables 11

range 11

KEY 19
KEY$ 19
keypresses, recognising 19

labels 26, 27

LOCAL 11, 34

logical operators 25

logical values 25

long integer variables 11
range 11

loops
conditions 22
DO...UNTIL 22
IF...ENDIF 23
maximum nested 24
WHILE...ENDWH 22

modifiers 19
modules

containing more than one procedure 30

copying 5

creating 2, 5

deleting 6

editing 3

naming 2

running 5, 6

stopping while running 7
translating 4

names of variables 12
‘New file’ option

in Program editor 5

in System screen 2, 5
‘No system memory’ 4, 5
non-document files 5
number input 18

‘Open file’ option
in Program editor 5
operators
arithmetic 14
conditional 25
logical 25
OR 24
‘Outline’ option 8
‘Overflow’ 16

parameters 31
multiple 32
‘Type mismatch’ 32
types 32
Passwords
on OPL programs 8
pausing a program 7
PRINT 14, 16, 18
PROC 2
procedure prototypes 35
procedures
calling 30
creating 2
naming 3
translating 4
‘Prog’ menu 4, 8
Program icon 5
proportional font
while editing 8
Psion+Esc 7
Psion-Menu 7

range
floating-point 11, 12
integer 11
long integer 11
REM 18
RETURN 33
returning values 33
‘Run’ option
in Program editor 6
running a module 5, 6

‘Save as’ option 8
‘Show error’ option 8

OPL

‘Show last error’ option 8
statement 2
status window 7
STOP 27
stopping a running program 7
strings 12
adding (concatenating) 16
input 18
structures 22
‘Syntax error’ 4

T

tab width 8
template files

in Program editor 8
text input 18
‘Too complex’ 24
‘Tools’ menu 8
‘Translate’ option 4
translating modules 4
true 25
‘Type mismatch’ 32
‘Type violation’ 35

U

UIDs

application 5
‘Undefined externals’ 34, 35
UNTIL O 27

V

variables
array 12
assigning values to 13
declaring 11
floating-point 11
GLOBAL and LOCAL 34
initial values 12
integer 11
long integer 11
names of 12
operations on 15
string 12
types 11

VECTOR 27

W

WHILE 1 27
WHILE...ENDWH 22

OPL

DATA FILE AND DATABASE HANDLING

[0 Copyright Psion Computers PLC 1997
This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS
DATA FILE HANDLING ..., 1
FILES, RECORDS AND FIELDSccovvviiiiiiiiiiniiseiseseciesesiss s 2
CREATING A DATA FILE ..ot 2
LOGICAL NAMES ... 2
FIELDS oo 2
OPENING A FILE c..iiiiiciiciciccece e e 3
SAVING RECORDS ..ottt 4
THE NUMBER OF RECORDS ..o 5
HOW THE VALUES ARE SAVEDcoouuiiiiiiiinniinciiseiiseeissaessasssse s 5
MOVING FROM RECORD TO RECORDc.ccouiiiiiiiiiiiiiiiiieiicisisecieiseciscic s, 6
DELETING A RECORD ...oocoviieiiirieienesis s 6
FINDING A RECORD ..ottt 6
WILDCARDS ..o 6
MORE CONTROLLED FINDINGcooviiirieieimieeiieeiisesss s 7
CHANGING/CLOSING THE CURRENT FILE ..o 8
EXAMPLE - COPIES SELECTED RECORDS FROM ONE FILE TO ANOTHERccooomriiiriiniinnciienes 8
CLOSING A DATA FILE .ot 8
KEEPING DATA FILES COMPRESSEDccvviuimiremiinimisemissesissessesosiss s 9
SERIES 3C AND SIENA DATA FILES AND THE DATA APPLICATIONccccoooviiiininiiccinicnne, 9
SERIES 5 DATABASE HANDLING ..., 11
THE SERIES 5 DATABASE MODELoouiiiiiiiiiciicicsccne e 12
DATABASES, TABLES, VIEWS, FIELDS AND FIELD HANDLESccoooviriiineiinneinenisnenisseieseenes 12
CREATING DATABASES AND TABLEScoiiiiiiiiiiiiciiceice s 12
LOGICAL NAMES ... 12
FIELDS oot 13
OPENING DATABASES AND TABLESoouiiiiiiiiiiiiciciccciecceece s 13
TRANSACTIONS ...t 13
RECORD POSITION L...uiiiiiiiiiiiiicieiec e 14
SAVING RECORDSooiiiiiiiiciiicieiscce s 14
THE NUMBER OF RECORDSooviimimiiimiiniminsisisssis e 14
CLOSING VIEWS AND DATABASEScoiiiiiiiiiiniicieiscceieccsiscssc e 14
INDEXES ..ottt 14
COMPACTION ..ttt 15
OPENING A DATABASE CREATED BY THE DATA APPLICATIONcccccovviiiiiiiiiiiiiiccinnne, 15
INDEX oo 16

(DATABASE INFORMATION ‘

OPL

You can use OPL to create data files (databases) like those used by the Data application. You
can store any kind of information in a data file, and retrieve it for display, editing or calcula-
tions.

This section covers:

e Creating data files

« Adding and editing records
e Searching records

e Using a data file both in OPL and in the Data application

The Series 5 and the Series 3c database models differ quite substantially. However, the Series 3c
method of database programming (except for some removed keywords as indicated) is com-
pletely understood by the Series 5 model and any existing code will not have to change. How-
ever, it is very strongly recommended that on the Series 5 you use the new keywords INSERT,
MODIFY, PUT and CANCEL, along with bookmarks and transactions, rather than using

APPEND, UPDATE, POS and POSITION.

If you are using the Series 5, it is recommended that you read this section for a description of
simple database use, and then the following section of this document which refers specifically to
features available on the Series 5.

(DATA FILE HANDLING | D)

OPL

Data files(or databasepare made up afecordswhich contain data in each of thé&lds For example, in a
database of names and addresses, each record might have a name field, a telephone number field, and separate
fields for each line of the address.

In OPL you can:

e Create a neviile with CREATE, or open an existing file with OPEN, and copy, delete and rename files with
COPY, DELETE and RENAME.

e Add a newecordwith APPEND, change an existing one with UPDATE, and remove a record with
ERASE.

* Fillin afield by assigning a value to a field variable.

Use the CREATE command like this:

CREATE filename$,logical name,field1,field2,...
For example:

CREATE “clients”,B,nm$,tel$,ad1$,ad2$,ad3%
creates a data file calledients

The file name is a string, so remember to put quote marks around it. You can also assign the name string to a
string variable (for examplf$="clients”) and then use the variable name as the argun@REATE
fil$,A fieldl,field2

[] You can have up to 26 data files open at a time. Each of these must have a logic&l toafne:

[] You can have up to 4 data files open at a time. Each of these must have a logicd, ig@er D.

The logical name lets you refer to this file without having to keep using the full file name.

A different logical name must be used for each data file opened - e.g. oneAcatezicalled and one called
C. A file does not have to be opened with the same logical name as the last time it was opened. When a file is
closed, its logical name is freed for use by another file.

fieldl ,field2 ... are the field names - up to 32 in any record. These are like variables, $6& as$ to
make the appropriate types of fields for your data. You cannot use arrays. Do not specify the maximum length of
strings that the string fields can handle. The length is automatically set at 255 characters.

Field names may be up to 8 characters long, including any qualifie.like

When referring to fields, add the logical file name to the front of the field name, to specify which opened file the
fields belong to. Separate the two by a dot. For exampfeme$ is thename$ field of the file with logical
nameA, andC.age% is theage%field of the file with logical nam€.

(pATA FILE HANDLING | 2)

OPL

The values of all the fields are 0 or null to start with. You can see this if you run this example program:
PROC creatfil:

CREATE “example”,A,int%,long&,float,str$
PRINT “integer=";a.int%

PRINT “long=";a.long&

PRINT “float=";a.float

PRINT “string=";a.str$

CLOSE

GET

ENDP

When you first CREATE a data file it is automatically open, but it closes again when the prograthaefilds.
already exists, trying to CREATE it again will give an error- so if you ran the proceduceeatfil: a
second time you would get an error. To open an existing file, use the OPEN command.

OPEN works in the same way as the CREATE command. For example:
OPEN “clients”,B,nm$,tel$,ad1$,ad2$,ad3$

You must use the same filename as when you first created it.

You must include in the OPEN command each of the fields you intend to alter or read. You can omit fields
from the end of the list; yocannot miss one out from the middle of the list, for example nm$,,ad1$ would
generate an error, whereas nm$,tel$,ad1$ would be fine. They must remain the same type of field, but you
can change their names. So a file created with fields name$,age% could later be opened with the fields
a$,x%.

You must give the file a logical name. See ‘Logical names’ above. You can't have two files open simultane-
ously with the same logical name, so when opening the files, remember which logical names you have
already used.

You might make aew module, and type these two procedures into it:
PROC openfile:

IF NOT EXIST(“example”)

CREATE “example”,A,int%,Ing&,fp,str$
ELSE

OPEN “example”,A,int%,Ing&,fp,str$
ENDIF
PRINT “Current values:”
show:
PRINT “Assigning values”
A.int%=1
A.Ing&=&2**20 REM the 1st & avoids integer overflow
A.fp=SIN(PI/6)
PRINT “Give a value for the string:”
INPUT A.str$
PRINT “New values:”
show:

ENDP

(DpATA FILE HANDLING | 8)

OPL

PROC show:
PRINT “integer=";A.int%
PRINT “long=";A.Ing&
PRINT “float=";A.fp
PRINT “string=";A.str$
GET

ENDP

NOTES

OPENING/CREATING THE FILE

The IF...ENDIF checks to see if the file already exists, using the EXIST function. If it does, the file is opened; if
it doesn't, the file is created.

GIVING VALUES TO THE FIELDS

The fields can be assigned values just like variables. The field name must be used with the logical file name like
this: A.f%=1 or INPUT A.f$

If you try to give the wrong type of value to a field (for examdavis ” to f%) an error message will be
displayed.

You can access the fields from other procedures, just like global variables. Here the called psboadure
displays the values of the fields.

FIELD NAMES

You must know the type of each field, and you must give each a separate name - you cannot refer to the fields in
any indexed way, e.g. as an array.

OPENING A FILE FOR SHARING

The OPENR command works in exactly the same way as OPEN, except that the file cannot be written to (with
UPDATE or APPEND), only read. However, more than one running program can then look at the file at the
same time.

SAVING RECORDS

The last example procedure did not actually save the field values as a record to a file. To do this you need to use
the APPEND command. This program, for example, allows you to add recordset@thple data file:

PROC count:

LOCAL reply%

OPEN “example”,A,f%,f&,f,f$

DO
CLS
AT 20,1 :PRINT “Record count=";COUNT
AT 9,5 :PRINT “(A)dd a record”
AT 9,7 :PRINT “(Q)uit”
reply%=GET
IF reply%=%q OR reply%=%Q

BREAK

ELSEIF reply%=%A OR reply%=%a

(DATA FILE HANDLING ‘

OPL

add:
ELSE
BEEP 16,250
ENDIF
UNTIL O
ENDP

PROC add:
CLS
PRINT “Enter integer field:”;
INPUT A.f%
PRINT “Enter long integer field:”;
INPUT A.f&
PRINT “Enter numeric field:”;
INPUT A.f
PRINT “Enter string field:”;
INPUT A.f$
APPEND

ENDP

BEEP
The BEEP command makes a beep of varying pitch and length:
BEEP duration%,pitch%

The duration is measured in 1/32 of a secondlusation%=32 would give a beep a second long. Try
pitch%=50 for a high beep, d00 for a low beep.

THE NUMBER OF RECORDS

The COUNT function returns the number of records in the file. If you use it just after creating a database, it will
return 0. As you add records the count increases.

HOW THE VALUES ARE SAVED

Use the APPEND command to save a new record. This has no arguments. The values agsighed\ttt |,

A.f andA.f$ are added as a new record to the end oéxtaenple data file. If you only give values to some

of the fields, not all, you won’t see any error message. If the fields happen to have values, these will be used;
otherwise - null strings”() will be given to string fields, and zero to numeric fields.

New field values are always added to the end of the current data fiteas the last record in the file (if the file
is a new one, it will also be the first record).

At any time while a data file is open, the field names currently in use can be used like any other variable - for
example, in a PRINT statement, or a string or numeric expression.

APPEND AND UPDATE

APPEND adds the current field values to the end of the file as a new record, whereas UPDATE deletes the
current record and adds the current field values to the end of the file as a new record.

CDATA FILE HANDLING ‘

OPL

MOVING FROM RECORD TO RECORD

When you open or create a file, the first record in the file is current. To read, edit, or erase another record, you
must make that record current - that is, move to it. Only one record is current at a time. To change the current
record, use one of these commands:

« POSITION ‘moves to’ a particular record, setting the field variables to the values in that record. For exam-
ple, the instruction POSITION 3 makes record 3 the current record. The first record is record 1.

* You can find the current record number by using the POS function, which returns the number of the current
record.

« FIRST moves to the first record in a file.

« NEXT moves to the following record in a file. If the end of the file is passed, NEXT does not report an
error, but the current record is a new, empty record. This case can be tested for with the EOF function.

* BACK moves to the previous record in the file. If the current record is the first record in the file then that
first record stays current.

¢ LAST moves to the last record in the file.

DELETING A RECORD
ERASE deletes the current record in the current file.

The next record is then current. If the erased record was the last record in a file, then following this command
the current record will be empty and EOF will return true.

FINDING A RECORD

FIND makes current the next record which has a field matching your search string. Capitals and lower-case
letters match. For example:

r%=FIND(“Brown")

would select the first record containing a string field with the value “Brown”, “brown” or “BROWN?”, etc. The
number of that record is returned, in this case to the vari#hld the number returned is zero, no matching
field was found. Any other number means that a match was found.

The search includes the current record. So after finding a matching record, you need to use NEXT before you
can continue searching through the following records.

FIND(“Brown”) would not find a field “Mr Brown”. To find this, use wildcards, as explained below.

You can only search string fields, not number fieldsFor example, if you assigned the value 71 to the field
a% you could not find this with FIND. But if you assigned the value “71d%¢you could find this.

WILDCARDS

r%=FIND(“*Brown*") would make current the next record containing a string field in wBriotvn
occurred - for example, the fields “MR BROWN?”, “Brown A.R.” and “Browns Plumbing” would be matched.
The wildcards you can use are:

? matches any one character

* matches any number of characters.

CDATA FILE HANDLING ‘

OPL

Once you've found a matching record, you might display it on the screen, erase it or edit it. For example, to
display all the records containing “BROWN:

FIRST

WHILE FIND(**BROWN*")
PRINT a.name$,a.phone$
NEXT
GET

ENDWH

FINDFIELD, like FIND, finds a string, makes the record with this string the current record, and returns the

number of this record. However you can also use it to do case-dependent searching, to search backwards through
the file, to search from the first record (forwards) or from the last record (backwards), and to search in one or
more fields.

f%=FINDFIELD(a$,start%,no%,flag%)

searches for the striref in no%fields in each record, starting at the field with nungiart% (1 is the

number of the first field)start% andno%may refer to string fields only and other types will be ignored. The
flag% argument specifies the type of search as explained below. If you want to search in all fields, use 1 as the
second argument and for the third argument use the number of fields you used in the OPEN/CREATE
command.

flag% should be specified as follows:
search direction flag%
backwards from current record 0
forwards from current record 1
backwards from end of file 2

3

forwards from start of file

[] constants for these flags are supplied in Const.oph. See the ‘Calling Procedures’ section of the ‘Basics.pdf’

document for details of how to use this file and see Appendix E in the ‘Appends.pdf’ document for a
listing of it.

Add 16 to the value dlag% given above to make the seacdse-dependenivhere case-dependent means
that the record will exactly match the search string in case as well as characters. Otherwise the search will be
case-independenthich means that upper case and lower case characters will match.

For example, if the following OPEN (or CREATE) statement had been used:
OPEN “clients”,B,nm$,tel$,ad1$,ad2$,ad3%

then the command

r%=FINDFIELD(“*Brown*”,1,3,16)

will search thexm$, tel$ andadl$ fields of each record for strings containing “Brown” searching case-
dependently backwards from the current record.

If you find a matching record and then you want to search again from this record, you must first use NEXT or
BACK (according to the direction in which you are searching) to move past the record you have just found,
otherwise the search will find the same match in the current record again.

(DpATA FILE HANDLING | 7)

OPL

Immediately after a file has been created or opened, it is automatically current. This means that the APPEND or
UPDATE commands save records to this file, and the record-position commands (explained below) move
around this file. You can still use the fields of other open files, for exaffiedd1=B.field2

USE makes current one of the other opened files. For exangiteB selects the file with the logical name B
(as specified in the OPEN or CREATE command which opened it).

If you attempt to USE a file which has not yet been opened or created, an error is reported.

In this procedure, the EOF function checks whether you are at the end of the current data file — that is, whether
you've gonepastthe last record. You can use EOF in the test condition of a loop UNTIL EOF or WHILE NOT
EOF in order to carry out a set of actions on all the records in a file.

PROC copyrec:
OPEN “example”,A,{%,f&,f,{$
TRAP DELETE “temp” REM If file doesn't exist, ignore error
CREATE “temp”,B,f%,f&,f,f$
PRINT “Copying EXAMPLE to TEMP”
USE A REM the EXAMPLE file
DO
IF a.f%>30 and a.f<3.1415
b.f%=a.f%
b.f&=a.f&
b.f=a.f
b.f$="Selective copy”
USEB REM the TEMP file
APPEND
USE A
ENDIF
NEXT
UNTIL EOF REM until End Of File
CLOSE REM closes A; B becomes current
CLOSE REM closes B
ENDP

This example uses the DELETE command to deleteemy file which may exist, before making it afresh.
Normally, if there were neemp file and you tried to delete it, an error would be generated. However, this
example uses TRAP with the DELETE command. TRAP followed by a command means “if an error occurs in
the command, carry on regardless”. The error value can then be found using ERR.

There are more details of ERR and TRAP in the ‘Errors.pdf document.

You should always ‘close’ a data file (with the CLOSE command) when you have finished using it. Data files
close automatically when programs end.

[] You can use up to 26 logical names (fileviews— see the ‘Series 5 Database Handling’ section of this

document) at a time - if you are using 26 logical names and you want to use another one, you must close
one of the open files or views first. CLOSE closes the file or view referred to byittentlogical name.

(DpATA FILE HANDLING | 8)

OPL

[] Youcan only have 4 files open at a time - if you already have 4 files open and you want to access another
one, you must close one of the open files first. CLOSE closesuthentfile.

KEEPING DATA FILES COMPRESSED
When you change or delete records in a data file, the space taken by the old information is not automatically
recovered.

[] By default, the space isot recovered when you close the file, unless you have used the SETFLAGS
command to enable auto-compaction on closing a file.

[] By default, the space is recovered when you close the file, provided it is on ‘Internal drive’ &4 a

SSD (i.e. itis not on a Flash SSD).
Closing a very large file which contains changed or deleted records can be slow when compression is enabled, as
the whole file beyond each old record needs copying down, each time.

(] vou canpreventdata file compression on the Series 3c if you wish, with these two lines:
p%=PEEKW($1c)+$le
POKEW p%,PEEKW((p%) or 1

(Use any suitable integer variable fif) Files used by the current program will naat compress when
they close.

Use these two lines to re-enable auto-compression:
p%=PEEKW($1c)+$le
POKEW p%,PEEKW(p%) and $fffe

Warning: be careful to enter these lines exactly as shown. These examples work by setting a system
configuration flag.

If you have closed a filevithout compression, you can recover the space by using the COMPRESS
command to create a new, compressed version of th€@M®PRESS “dat” “new” , for example,
creates a file calledew which is a compressed versiondait , with the space which was taken up by old
information now recovered. (You have to use COMPRESS to compress data files which are kept on a
Flash SSD.)

[] oOn the Series 5, you can use the COMPACT command when the database is closed. See the ‘Series 5
Database Handling’ section of this document.

SERIES 3C AND SIENA DATA FILES AND THE DATA APPLICATION

The files you use with the Data application (listed under the Data icon in the System screen) often called
database®r database files are also just data files.

Data files created by the Data application can be viewed in OPL, and vice versa.

In OPL: to open a data file made by the Data application, begin its nam&ih , and end it withDBF.
For example, to open the file callddta which the Data application normally uses:

OPEN “\dat\data.dbf”,A,a$,b$,c$,d$...

CDATA FILE HANDLING ‘

OPL

Restrictions:

e You can use up to 32 field variables, all strings. It is possible for records to contain more than 32 fields, but
these fields cannot be accessed by OPL. It's safe to change such a record and use UPDATE, though, as the
extra fields will remain unchanged.

e The maximum record length in OPL is 1022 characters. You will see a ‘Record too large’ error (-43) if your
program tries to open a file which contains a record longer than this.

e The Data application breaks up long records (over 255 characters) when storing them. They would appear
as separate records to OPL.

In the Data application: to examine an OPL data file, press the Data button, select ‘Open file’ from the ‘File’
menu and Control+Tab to type in a file name, and then type the nam®WRIEh on the front andODB at the
end for example:

\opd\example.odb

Restrictions:
e All of the fields must be string fields.

* You can have up to a maximum of 32 fields, as specified in the CREATE command. If you view an OPL
data file with the Data application, and add more lines to records than the number of fields specified in the
original CREATE command, you will get an error if you subsequently try to access these additional fields in
OPL.

In both cases, you are using a more comjiletspecification There is more about file specifications in the
‘Advanced.pdf’ document.

[] For details of using Data application files in OPL on the Series 5, see the next section of this document.

CDATA FILE HANDLING ‘

OPL

SERIES 5 DATABASE HANDLING

The Series 5 uses the relational database management system (DBMS) of EPOC32 which sup-
ports SQL (Standard Query Language).

Apart from the removed keywords RECSIZE, COMPRESS and ODBINFO, the Series 3c
methods of database programming are completely understood by the Series 5 model and exist-
ing code will not have to change. However, it is very strongly recommended that you use IN-
SERT, MODIFY, PUT and CANCEL along with bookmarks and transactions, rather than using
APPEND, UPDATE, POS and POSITION.

See also the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for some more detailed
description of the use of new and changed database commands and ‘Database OPX’ in the
‘OPX.pdf’ document.

(SERIES 5 DATABASE HANDLING ‘

OPL

As has been stressed previously, it is very strongly recommended that you use this Series 5 specific model on the
Series 5, despite the fact that the data file handling methods of the Series 3¢ may still be used on the Series 5.
The reasons for this are as follows:

e the new keywords closely reflect the underlying EPOC32 database model supplied by DBMS. They are
therefore more efficient than the Series 3c keywords on the Series 5.

* to emulate the Series 3c behaviour, APPEND has to create an intermediate copy of the record which is
erased on completion of the keyword. This ensures the rather strange requirement that the field values of the
previous APPEND are used as the initial values for the current APPEND. This can make a database grow
far larger than on the Series 3c. You can, however, use COMPACT or SETFLAGS to remove erased
records from a database.

e without transactions, writing a large number of records to a database is far slower on the Series 5 than on
the Series 3c. However, with transactions it is far faster.

e the Series 5 model is superior.

To describe the new model it is necessary to expand upon the terminology that was used in the previous section.

A Series 3c data file corresponds more or less to a $aldégn a DBMS database file. A database can contain one
or more tables. A table, like a data file on the Series 3c, contains records which are made up of fields. Unlike the
Series 3c, however, the field names as well as the table names are stored in the database.

With the statement:
CREATE “datafile”,A,f1%,f2%

as described in the previous section, the Series 5 creates a databastatalled and a table with the
default nam&ablel would be added to it. The field names are derived fronfil#teandf2% which are
calledfield handlesThe type of the field, as always, is defined by these handles.

With the Series 5 it is also possible to use, for example,
CREATE “people FIELDS name, number TO phoneBook”,A,n$,number$

This will create a table callgghoneBook in the database callggtople , creating the database too if it does
not exist. The table will have fieldmme andnumber , whose respective types are specified by the field
handlesn$ andnumber$, both strings in this example.

Note that CREATE creategsable. An error is raised if the table already exists in the database. DBMS does not
allow the database to be open when a table (or an index: see ‘Database OPX’ in the ‘OPX.pdf' document) is
created in it, so you should first close the database, i.e. close any tables previously opened in it, before using
CREATE.

You can have up to 26 views on tables open at a time on the Series 5. Each of these must have a lodical name:
to Z (the Series 3c only supported 4 files open at one time).

CSERIES 5 DATABASE HANDLING | 12)

OPL

On the Series 5, field names may be up to 32 characters long, including any qualiBer like

With the Series 3¢ OPEN statement,
OPEN “datafile”,A,f1%,f2%

the Series 5 would open the default tabddlel and provide access to as many fields as there are handles
supplied.

On the Series 5, it is also possible to open multie/son a table simultaneously and to specify which fields
are to be available in a view, e.g.

OPEN “people SELECT name FROM phoneBook”,A,n$
This view gives you access to just tieme field from thephoneBook table.

The string fromSELECTonwards in the OPEN statement forms an SQL query which is passed straight on to the
underlying EPOC32 DBMS. The SQL command-set is specified in Appendix F in the ‘Appends.pdf’ document.

A more advanced view, ordered byiadex (described later), would be opened as follows,

OPEN *“people SELECT name,number FROM phoneBook ORDER BY name ASC, number
DESC”,A,n$,num%

This would open a view withame fields in ascending alphabetical order and if any names were the same then
the number field would be used to order these records in descending numerical order.

A set of related records should be committed only on successfully PUTting the last one. Otherwise all new
records may be discarded using ROLLBACK. This ensures the atomicity of the whole transaction.

Transactionsallow changes to a database tacbemittedn stages. It is necessary to use transactions in
database operations to achieve reasonable speeds.

Transactions are a truly fundamental part of the DBMS model, so much so that without the use of transactions
you will find that writing to a DBMS database is in fact slower than the equivalent operations in on the Series
3c. With transactions however, the Series 5 database handling is far faster than that of the Series 3c.

A transaction is carried out using the following commands:

¢ BEGINTRANS begins a transaction on the current database. Once a transaction has been started on a view
(or table) then all database keywords will function as usual, but the changes to that view will not be made
until COMMITTRANS is used.

¢ COMMITTRANS commits the transaction of the current view.

« ROLLBACK cancels the current transaction on the current view. Changes made to the database with respect
to this particular view since BEGINTRANS was called will be discarded.

* INTRANS finds out whether the current view is in a transaction.

(SERIES 5 DATABASE HANDLING | 13)

OPL

In the DBMS model, as with most modern relational database models, absolute record position does not have much
significance.

Bookmarksan be assigned to particular records to provide fast record andestould be used in preference to

POS and POSITIONwhen opening views using the Seri€3PEN...SELECT.. orCREATE...FIELDS...

statements. POS and POSITION can be used safely on tables opened or created using a Series 3c-style OPEN or
CREATE statement. However, POS and POSITION shmtlde used in conjunction with bookmarks as bookmarks

can cause these keywords, kept mainly for Series 3¢ compatibility, to become inaccurate. Note that if bookmarks
are used in conjunction with POS and POSITION accuracy can be restored by using FIRST or LAST on the current
view.

The new commands provided for the use of bookmarks are as follows: BOOKMARK puts a bookmark at the
current record of the current database view. The value returned can be passed to GOTOMARK to make the record
current again and to KILLMARK to delete the bookmark.

When using the Series 5 extensions to CREATE and OPEN, you should also use the new MODIFY, INSERT, PUT
and CANCEL keywords in preference to the APPEND and UPDATE Series 3c commands. APPEND and UPDATE
will still work as expected, but do not naturally fit in the DBMS model.

« MODIFY allows records to be changed without being moved to the end of the set (as UPDATE still does).

* Instead of copying the current record to the end of the set as APPEND does, INSERT appends a new record
to the end of the set with numeric fields set to 0 and string fields empty if values have not been assigned to
them.

e PUT marks the end of a database’s INSERT or MODIFY phase and makes the changes permanent.

e CANCEL marks the end of a database’s INSERT or MODIFY phase and discards the changes made during
that phase.

The COUNT function returns the number of records in the file. If you try to count the number of records between
assignment and APPEND/UPDATE or between MODIFY/INSERT and PUT an ‘Incompatible update mode’ error
will be raised.

CLOSE closes the current view on a database. If there are no other views open on the database then the database
itself will be closed.

Indexescan be constructed on a table using several fieldsyasThese indexes are subsequently used to provide
major speed improvements when opening a table or views on them.

Further database functionality is provided in the Database OPX, discussed in the “OPX.pdf’ document.

CSERIES 5 DATABASE HANDLING | 14)

OPL

COMPACT replaces the COMPRESS command on the Series 5. This compacts a database, rewriting the file in
place without any removed or deleted data. All views on the database and the hence the file itself should be
closed before calling this command. Compaction may also be done automatically on closing a file by setting the
automatic compaction flag using SETFLAGS. See the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’
document for full details of this.

It is currently not possible to open an OPL database from the Data application. You can however open a file
created by the Data application in an OPL program. The file is opened for reading only, because if it were

written to, OPL would have to discard all the formatting characters and prevent the Data application from
reopening the file subsequently. An OPL program can create a new OPL database and copy the Data application
records into it if necessary.

To open a Data application database that has one string field which you need to access, you could use:
OPEN *“file”,a,a$
Types not supported by OPL will be ignored. Note that integer fields in the Data application correspond to long

integer fields in OPL: the Data application does not support (16-bit) integer fields. The types and order of the
OPL field handles must match the fields in the Data file. For example, if the ddbafd2 contains:

1. long integer field

2. date/time field (ignored by OPL)
3. string field

4. floating-point number field

you could access the fields supported by OPL using:
OPEN “Data2”,A, f1&,f2$,f3

It would be better, however, to use the SQL SELECT clause to name the required Data file fields explicitly. For
this to be possible it is necessary to use table name and the same field names as are used by Data. All Data files
have a single table call@thblel . The fields (referred to internally as columns in Data) are n&CogAll ,

ColA2 , etc.

So, with the field types from the previous example, the Data file could be opened using:
OPEN “Data2 SELECT ColA1,ColA3,ColA4 FROM Tablel”,a,f1&,f2$,f3

(SERIES 5 DATABASE HANDLING | 15)

OPL

INDEX

A
APPEND 5

B

BACK 6

BEEP 5
BEGINTRANS 13
BOOKMARK 14

C

CANCEL 14
CLOSE 8, 14
COMMITTRANS 13
COMPACT 15
COMPRESS 9
COUNT 5, 14
CREATE 2, 12

D

Data application
and OPL data files 9
opening databases in OPL 15
data file
appending 4
checking for EOF 8
closing 8
compressing 9
creating 2
field names 2, 4
finding a record 6
logical names 2
moving between records 6
opening 3
structure 2
updating 5
using a different file 8
databases 12
compacting 15
creating 12
opening 13
transactions 13
DELETE 8

E

end of file, in a data file 8

EOF 8
ERASE 6
F

field handles 12
fields
as keys 14
in data files 2
inputto 4
types 2
FIND 6
FINDFIELD 7
FIRST 6

G
GOTOMARK 14

‘Incompatible update mode’ 14
input
to data fields 4
INSERT 14
INTRANS 13
K

KILLMARK 14

L

LAST 6
logical name

of data file 2
logical names 12
M

MODIFY 14

N
NEXT 6

O
OPEN 3,13

P

POS 6, 14
POSITION 6, 14
PUT 14

OPL

R

‘Record too large’ 10

records 2
bookmarks 14
moving between 6
saving 4, 14

ROLLBACK 13

T

tables
creating 12
field handles12
field names 13
in a database 12
indexes 14
opening 13
SQL query 13
views on 13

TRAP 8

U

UPDATE 5
USE 8

W

wildcards

in data file search 6

OPL

GRAPHICS
&
FRIENDLIER INTERACTION

This part of the OPL User Guide is divided into two sections:
e Graphics: this covers the powerful graphics capabilities of OPL.

e Friendlier Interaction: this explains how to make your programs easier to use through
employing features such as menus and dialogs.

[0 Copyright Psion Computers PLC 1997
This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS

GR A P HICS ettt ettt e e e e e et e e e tetete ittt e enenen 1
SIMPLE GRAPHICS .o enanas 2
DRAWING LINES .o eeee ettt e e e e e e e e e e e e e s e eesees e e s eesseseeeseeseeaseesseseesseeneeneeeneens 2
DRAWING DOTS e et e ee e ee e eeeeeesee s eeee s e e s sees s e s seeeeseseeseseeeeseeeesenenes 3
RIGHT AND DOWN, LEFT AND UP ..ot e e e s e seeseseeseseesanes 3
GOING OFF THE SCREEN .o s s e e ee e s s eeseseee s s e e seeeeseee aene 3
CLEARING THE SCREEN ..o e e s s e e ee s e e e e s s e e s e e seeeseeees s 4
DRAWING IN GREYS ON THE SERIES 5 .o, 4
COLOUR MODES e e e e s e e s s e s e e s ees s en s 4
NO CONCEPT OF A GREY PLANE: GREY IS JUST ONE OF THE COLOURSovoeeeeeeeeeeeeeeren. 5
DRAWING IN GREY ON THE SERIES 3C AND SIENA ..ot 5
INITIALISING FOR THE USE OF GREY .ot ee s ee e s e s s s e s s eeeeeseeeseseaes 5
USING GREY et ee e s e e e e e e e e e e e e e e e s s e e e eee s s e s e e s e seeeeraeen 5
EXAMPLE ..o e e e e e e e e e e s e e e e e e et e e e e e e r e 6
OVERWRITING PIXELS oot e e e e e e e e e e e e e e e e eeses e s ees e s eeeeen. 6
DRAWING RECTANGLES ..ottt eeee e e e e e eeeeeeeeee e eeeseeeeseseeeseseeseseeseeaeeesesens 6
OVERWRITING WITH ANY DRAWING COMMAND ...t see s eeeseseeeeeseseeseeeeeen 7
OTHER DRAWING KEYWORDS ..o ee e s e s e s eeeeseeeeseseeseseseeseseeseseeseens 8
GRAPHICAL TEXT ettt ee e ee e eee e e et e e e e e e e e e e e e e e e e s e s eas e s eesensesesesenseeseeseeseeees 8
DISPLAYING TEXT WITH GPRINT et eee s ee s e ees s s seeseeeesesessesessesessesessesenes 8
FONTS oottt e e e e e e e e e et e e e e e e s e e e e ees e e e e e e e e eee e e ee e e e e e e s seee e e e s eeeeeeaeeeenees 9
TEXT STYLE oot ee e e e e e e e e e e e e e s eee e ee s e ee e e ee e s e e e e e s s e e s eeeesseeeeens 12
OVERWRITING WITH GPRINT <.t eeseeseseeeeeeeseeeeseseeseeeessesseseeseseeeeens 12
OTHER GRAPHICAL TEXT KEYWORDS ..o s see s eese e s seeseseeseseeseseneseen 14
LA A N B @ 1AV PP 14
WINDOW IDS AND THE DEFAULT WINDOW ... 14
GRAPHICS KEYWORDS AND WINDOWS ... eese e s s s s s eeeeeen 14
CREATING NEW WINDOWS ..o e e e e e s s s e s e s eenesens 15
CLOSING WINDOWS ..o e e e e e e e e e s s e s eeeeeen. 17
WHEN WINDOWS OVERLAP ..o e e e e e e e e eeee s e s s e seeeeeen 17
HIDING WINDOWS .o et s e e e e s e e e e s e e s e e seeeeseeseseeeese s 17
THE GRAPHICS CURSOR IN WINDOWS ... eese s s s s 17
INFORMATION ABOUT YOUR WINDOWS ..o e e s s seseeseee 18
OTHER WINDOW KEYWORDS ..o s e e s s e see e e e seseeseseeseseeseseeseees 18

1 COPYING GREY BETWEEN WINDOWS ... eeeeseeee s eese s ses e 18
ADVANCED GRAPHICS ettt ettt eeaes 19
BITIVIAPS ettt e e e e e e e eee s e e e e e e e e s e eeeseee e ee e e e se e e seeseseeeeeeeee eeeneeeeneeaees 19
L0 MIASKS ettt ettt e et et e et e e et et e e e et ee e eeeeenes 20
SPEED IMPROVEMENTS ..o e e e e s eeeee e e e s s eeeee s eeseeeeseeeeeeeenesesees 20
DISPLAYING A RUNNING CLOCK ...ttt ee e ee e se s e s s s s e eeee s s eseeens 20
USER-DEFINED FONTS AND CURSORS ...ttt eee e s eeeeseseseeeesesseseeseneeen. 21
THE TEXT AND GRAPHICS WINDOWS ...t ee e se e eeeeseseeeeeese s eeseenae 21

CGRAPHICS AND INTERACTION ‘

OPL

FRIENDLIER INTERACTION ...ttt eeee e 24
IMENUS ettt ettt e e e e e ettt ettt e e e e e e e eeeeneneeaanes 25
DEFINING THE MENUS et 25

[] ADDITIONAL FEATURES ON THE SERIES 5ocvvoveveieieceeceeeiseeseeeeeseeeeseeseeeeesee e 26
DISPLAYING THE MENUS L..oiiiiii et 27
DISPLAYING A POPUP MENU L.cciiiiiiiiiiiiiiiiiiiee ettt e e 27
PROBLEMS WITH MENUS ..ottt 28
AMENU EXAMPLEoiiiiiii e e s 29
LINES YOU CAN USE IN DIALOGS ..ottt ettt 31
STRINGS, SECRET STRINGS AND FILENAMESooiiiiiiiiiiiiieeiec e 32
CHOOSING ONE OF A LIST oottt e e .33
NUMBERS, DATES AND TIMES ..iiiiiiiiiiiie e 33
RESULTS FROM DIDATE ..ottt ettt e e e e e e 35
DISPLAYING EXIT KEYS ..ottt st st e e e e e 37
OTHER DIALOG INFORMATION .ottt ettt e et e e 37
POSITIONING DIALOGS ...ttt ettt ettt e ettt e e e e e e e e enee e 37

[] OTHER DIALOG FEATURESoovvveoeeeeeeeeeeeeseseeseeeseesee e seseeeses s neneen 37
RESTRICTIONS ON DIALOGS ...ooiiiiiiiiiiiiieeetite ettt e 38
SERIES 5 TOOLBAR USAGE ..ottt ettt e e e 38
TOOLBARIOPH et e e e et e e e e et e e e e et e e e eaabaeeeeaseas 38
TYPICAL TOOLBAR.OPO USAGE ...cciiiiiiiiiiiee et 39
TBARLINK: et e e e e a e e e e e s 39
TBARINIT: et e e e e e e s ae e e e e e s anaeees 40
TBARSETTITLE: coeiiiiiiie ettt e e e e seee e e e 40
TBARBUTT: Lt e et e e e e s bae e e e e e s e naneees 40
TBAROFFERYO: weeeiiiiiiiiieee ettt e e e ee e e 42
TBARLATCHE: L.t et e e e e s e e e e s aanne s 42
TBARSHOW : L.t e e e e e e e s 43
TBARHIDE:iiiiiiiiiie et e e e st e e e e e aeeeeeeeeaans 43
PUBLIC TOOLBAR GLOBALScoiiiiiiiiii ittt 43
GIVING INFORMATION L.ttt e et e e ea e e eaa e 43
STATUS WINDOW TEMPORARY AND PERMANENToooiiiiiiiiiiiiiii i, 43

THE RANK OF THE STATUS WINDOWcciiiiiiiiiiiiiiiiiiiiiiiiicccienece e 43
FINDING THE POSITION AND SIZE OF A STATUS WINDOWcoiiviiiiiiiiiiiiiiciiiececen. 44

WHAT THE STATUS WINDOW DOESooiiiiiiiiiiiiieiiieiitee ettt 44

USING A DIAMOND LIST IN THE STATUS WINDOWccciiiiiiiiiiiiiiiiiiiiiieeeeeeeieeeeeeeee 44
INFORMATION MESSAGES ...ttt ettt e e e e e s 45
BUSY” MESSAGES ...ooiiiii ettt et e e et e e e e e 46
IN D E X ettt ettt ettt et e et et e et e et e e et e e et e an et e aaeeaneanaan 47

CGRAPHICS AND INTERACTION ‘

OPL

GRAPHICS

OPL graphics allows you, for example, to:

» Draw lines and boxes.

e Fill areas with patterns.

« Display text in a variety of styles, at any position on the screen.
e Scroll areas of the screen.

e Manipulate windows and bit patterns.

. Read data back from the screen.

On the Series 5 you can additionally:

« Draw circles and ellipses.

e Set the pen width.

You can draw using black, grey and white.

Graphics keywords begin aG. In the OPL User Guide a lower casg is used - for examplegBOX
- but you can type them using upper or lower case letters.

& Some graphics keywords are mentioned only briefly in this section. For more details about
them, see the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

GRAPHICS)
4

OPL

The Psion screens are made up of the following numbers of points:
Series 5 Series 3c Siena
640 x 240 480% 160 240x 160
These points are sometimes referred tpiasls

Each pixel is identified by two numbers, giving its position across and down from the top left corner of the
screen. 0,0 denotes the pixel in the top left corner; 2,1 is the pixel 2 points across and one down, and so on.
639,239 is the pixel in the bottom right corner on the Series 5, for example.

Note that these co-ordinates are very different to the cursor positions set by the AT command.

OPL maintains &urrent positionon the screen. Graphics commands which draw on the screen generally take
effect at this position. Initially, the current position is the top left corner, 0,0.

[] onthe Series 5, colour modes allowing the use of 2, 4 or 16 colours are available. These colours are
mapped to grey shades on a non-colour screen.

[] on the Series 3c and Siena, you can draw using black, grey and white although grey is not accessible by
default (it has to be switched on explicitly). See the ‘Drawing in grey’ section below for further details.

Here is a simple procedure to draw a horizontal line in the middle of the screen:

PROC lines:
gMOVE 180,80
gLINEBY 120,0
GET

ENDP

gMOVE moves the current position by the specified amount. In this case, it moves the current position 180
pixels right and 80 down, from 0,0 to 180,80. It does not display anything on the screen.

gLINEBY (g-line-by) draws a line from the current position (just set to 180,80) to a point at the distance you
specify - in this case 120 to the right and 0 down, i.e. 300,80.

[] The Series 5 never draws the end point of linegylfdNEBY dx%,dy% , pointgX+dx%,gY+dy% is not
drawn. Note, however, that OPL specially plots the point when the start and end-point coincide.

[] When drawing a horizontal line, as in the above example, the line that is ididwdesthe pixel with the

lower x co-ordinate anexcludesthe pixel with the higher x co-ordinate. Similarly, when drawing a
vertical line, the linéncludesthe pixel with the lower y co-ordinate aexicludesthe pixel with the higher
y co-ordinate.

When drawing a diagonal line, the co-ordinates of the end pixels are turned into a rectangle. The top left
pixel lies inside the boundary of this rectangle and the bottom right pixel lies outside it. The line drawing
algorithm then fills in those pixels that are intersected by a mathematical line between the corners of the
rectangle. Thus the line will be drawn minus one or both end points.

gLINEBY also has the effect of moving the current position to the end of the line it draws.

(crapHics | 18)

OPL

With both gMOVE and gLINEBY, you specify positionslative to the current position. Most OPL graphics
commands do likewise. gMOVE and gLINEBY, however, do have corresponding commands which use absolute
pixel positions. gAT moves to the pixel position you specify; gLINETO draws a line from the current position to
an absolute position. The horizontal line procedure could instead be written:

PROC lines:
gAT 180,80
gLINETO 300,80
GET

ENDP

gAT and gLINETO may be useful in very short graphics programs, and gAT is always the obvious command for
moving to a particular point on the screen, before you start drawing. But once you do start drawing, use gMOVE
and gLINEBY. They make it much easier to develop and change programs, and allow you to make useful
graphics procedures which can display things anywhere you set the current position. Almost all graphics
drawing commands use relative positioning for these reasons.

You can set the pixel at the current position withNEBY 0,0

gMOVE and gLINEBY find the position to use by adding the numbers you specify on to the current position. If
the numbers are positive, it moves to the right and down the screen. If you use negative numbers, however, you
can specify positions to the left of and/or above the current position. For example, this procedure draws the same
horizontal line as before, then another one above it:

PROC lines2:
gMOVE 180,80
gLINEBY 120,0
gMOVE 0,-20
gLINEBY -120,0
GET

ENDP

The first two program lines are the same as before. gLINEBY moves the current position to the end of the line it
draws, so after the first gLINEBY the current position is 300,80. The second gMOVE moves the current position
up by 20 pixels; the second gLINEBY draws a line to a point 120 pixels tefthe

[] The end pixel is never set;

[] For horizontal and vertical lines, the right-hand/bottom pixel is not set. For diagonal lines, the right-most
and bottom-most pixels are not set; these may be the same pixel.

No error is reported if you try to draw off the edge of the screen. It is quite possible to leave the current position
off the screen - for examplgl.INETO 650,80 will draw a line from the current position to some point on the
right-hand screen edge, but the current position will finish as 650,80.

There’s no harm in the current position being off the screen. It allows you to write procedures to display a
certain pattern at the current position, and not have to worry whether that position is too close to the screen edge
for the whole pattern to fit on.

(crapHics | 8)

OPL

gCLS clears the screen.

On the Series 5, OPL supports varicotour modes
J 2-colour mode (black and white). This is stored as 1 bit per pixel (bpp).
. 4-colour mode (white, light grey, dark grey and black). This is stored as 2 bpp.

o 16-colour mode (white, 14 greys and black). This is stored as 4 bpp.

By default the screen is in 4-colour mode, so black, white and two greys are automatically available. To enable
drawing in 16 colours, you need to WBEFAULTWIN 2 at the start of your program. (Note that this also clears

the screen.) 16-colour mode is not automatically available because the hardware switches to 16-colour mode if
any window displayed has this mode and 16-colour mode uses twice the memory and much more power than 4-
colour mode. So the default ensures that programs that do not need to use 16 colours are not unnecessarily
penalised.

The display power consumption is dependent on both the colour mode and the pattern on the display, as follows:
J Colour mode: power consumption doubles from 1 bpp to 2 bpp and again from 2 bpp to 4 bpp.

. Pattern: the worst power consumption for the display is produced by a checker board pattern.
Grey areas also increase the power consumption considerably.

Overall the current taken by the display is between 25% and 60% of the total idle current:
o 25%: 2 bpp plain screen (e.g. plain Word screen).
. 40%: 2 bpp grey areas on screen (e.g. Calc screen).

. 60%: 4 bpp bitmap on the screen.
It is difficult to be more precise since the power consumption is very dependent on what is being displayed.

To set the colour used for graphics, @gg&OLOR red%,green%,blue% . Thered%, green% and blue%

values specify a colour, which will be mapped to white, black or one of the greys on non-colour screens. Note that
if the values ofed%, green% andblue% are equal, then a pure grey results in a 16-colour window, ranging from
black (0) to white (255).

Note that if you use gCOLOR in 4-colour mode, colours with shades between the four colours available will
appeadithered that is areas of the colour will have some pixels set to one colour and some to another so as to
give the appearance of a colour between the two colours used. If gCOLOR is used in 2-colour mode, light greys
will be mapped to white and dark greys to black.

DEFAULTWIN 1disables the use of 16 colours again, returning to 4-colour mode and also clearing the screen.
If you do not wish to use any greys then you shouldEEAULTWIN 0to use 2-colour mode. N.B. This s in
fact implemented by mapping dark grey to black and light grey to white.

DEFAULTWINdoes not effect PRINT statements - it applies only to graphics and graphics text (see gPRINT
later).

(crapHics |[0)

OPL

Constants for the modes of DEFAULTWIN are supplied in Const.oph. See the ‘Calling Procedures’ section of
the ‘Basics.pdf’ document for details of how to use this file and see Appendix E in the ‘Appends.pdf document
for a listing of it.

There is no concept of a grey plane on the Series 5 (see the Series 3c descriptiogBBBYmode%just draws
in grey (unlessnode%=0Q when it draws in black).

To draw in grey you need to uBEFAULTWIN 1 at the start of your program. (Note that this clears the screen.)
Grey is not automatically available because it requires twice the memory (and takes longer to scroll or move)
compared to having just black. So programs that do not need to use grey are not unnecessarily penalised.

DEFAULTWIN Odisables the use of grey again, also clearing the screen.

@ It is not possible to have a screen using grey only.

DEFAULTWIN 1does not cause PRINT to print in grey - it applies only to graphics and graphics text (see
gPRINT later).

When you us®EFAULTWIN 1the existing black-only screen is cleared and replaced by one which contains a
black planeand alsoagrey plane The black plane is also sometimes called the normal plane. These are referred
to as ‘planes’ because intuitively it is simplest to think of there being a plane of blackipiftelst of (or on

top of) a plane of grey pixels, with any grey only ever visible if the black pixel in front of it is clear.

If you draw a pixel using both black and grey, it will appear black. If you then clear the black plane only,
the same pixel will appear greylf you draw a pixel using grey only it will appear grey unless it is already
black, in which case it is effectively hidden behind the black plane.

If you need to use grey, you are recommended t@&FAULTWIN 1 once and for all at the start of your
program. One reason is because DEFAULTWIN can fail with a ‘No system memory’ error and it is unlikely that
you would want to continue without grey after trying to enable it.

@ Note that gXBORDER, gBUTTON and gDRAWOBJECT all use grey and therefore can only be used when
grey in enabled. If grey is not enabled, they raise a ‘General failure’ error.

Once you have usddEFAULTWIN 1 you can use the gGREY command to set which plane should be used for
all subsequent graphics drawing (until the next use of gGREY).

gGREY 0 draws to the black plane only.
gGREY 1 draws to the grey plane only.
gGREY 2 draws to both planes.

gGREY 1 andgGREY 2 raise an error if the current window does not have a grey plane.

As mentioned earlier, when you set a pixel using both black and grey, the pixel appears black because the black
plane is effectively in front of the grey plane. So drawing to both planes is generally only used for clearing

pixels. For example, if your screen has both black and grey pixels, gCLS will clear the pixels only in the plane
selected by gGREY. To clear the whole screen with gCLS, you thereforg G&EelY 2.

(crapHics | 8)

OPL

To draw in grey when the pixels to which you are drawing are currently black, you first need to clear the black.

A pixel will appear white only if it is clear in both planes.

The following procedure initialises the screen to allow grey, draws a horizontal line in grey, another below it in
black only and a third below it in both black and grey. Pressing a key clears the black plane only, revealing the
grey behind the black in the bottom line and clearing the middle line altogether.

PROC exgrey:

DEFAULTWIN 1 REM enable grey
gAT 0,40 :gGREY 1 :gLINEBY 480,0 REM grey only
gAT 0,41 :gLINEBY 480,0
gAT 0,80 :gGREY 0 :gLINEBY 480,0 REM black only
gAT 0,81 :gLINEBY 480,0
gAT 0,120 :gGREY 2 :gLINEBY 480,0 REM both planes
gAT 0,121 :gLINEBY 480,0
GET
gGREY 0 REM black only
gCLS REM clear it
GET
ENDP

The gBOX command draws a box outline. For exangB&)X 100,20 draws a box from the current position
to a point 100 pixels to the right and 20 down. If the current position were 200,40, the four corners of this box
would be at 200,40, 300,40, 300,60 and 200,60.

i you have used gCOLOR as described earlier, the box is drawn in the colour selected.

i you have use®EFAULTWIN 1 and gGREY as described earlier, the box is drawn to the black and/or
grey plane as selected.

gBOX does not change the current position.

gFILL draws a filled box in the same way as gBOX draws a box outline, but it has a third argument to say which
pixels to set. If set to 0, the pixels which make up the box would be set. If set to 1, pixels are cleared; if set to 2,
they are inverted, that is, pixels already set on the screen become cleared, and vice versa. The values 1 and 2 are
used wheroverwriting areas of the screen which already have pixels set.

L] you have use®EFAULTWIN 1and gGREY as described earlier, the filled box will be set, cleared or

inverted in the black and/or grey plane as selected. Once again, it helps to think of the pixels being set or
clear in each plane independently: so clearing the pixel in the black plane reveals the grey plane behind it
where the pixel may be set or clear.

So withgGREY 1 set for drawing to the grey plane only, inverting the pixels in the filled box will change

the grey plane only - black pixels are left alone but clear or grey pixels are inverted to grey and clear pixels
respectively. Similarly, inverting the black plane changes clear pixels to black, but “clearing” black pixels
displays grey if the pixel is set in the grey plane.

(crapHics |9)

OPL

This procedure displays a “robot” face, using gFILL to draw set and cleared boxes:

PROC face:
gFILL 120,120,0 REM set the entire face
gMOVE 10,20 :gFILL 30,20,1 REM left eye
gMOVE 70,0 :gFILL 30,20,1 REM right eye
gMOVE -30,30 :gFILL 20,30,1 REM nose
gMOVE -20,40 :gFILL 60,20,1 REM mouth
GET
ENDP

Before calling such a procedure, you would set the current position to be where you wanted the top left corner of
the head.

You could make the robot wink with the following procedure, which inverts part of one eye:

PROC wink:
gMOVE 10,20 REM move to left eye
gFILL 30,14,2 REM invert most of the eye
PAUSE 10
gFILL 30,14,2 REM invert it back again
GET

ENDP

Again, you would set the current position before calling this.

The gPATT command can be used to draw a shaded filled rectangle. To do this,assis first argument,

then the same three arguments as for gFILL - width, height, and overwrite method. Overwrite methods 0, 1 and
2 apply only to the pixels which are ‘on’ in the shading pattern. Whatever was on the screen may still show
through, as those pixels which are ‘clear’ in the shading pattern are left as they were.

To completely overwrite what was on the screen with the shaded pattern, gPATT has an extra overwrite method
of 3. So, for examplggPATT -1,120,120,3 in the first procedure would have displayed a shaded robot
head, whatever may have been on the screen.

[] Again, the shaded pattern will be drawn in grey if you have selected the grey plane onyGREY 1.

And again, if you are writing to the black plane only, any pixels set in the grey plane can be seen if the
corresponding pixels in the black plane are clear.

By using the gGMODE command, any drawing command such as gLINEBY or gBOX can be made to clear or
invert pixels, instead of setting them. gGMODE determines the effedt sfibsequent drawing commands.

The values are the same as for gFIgIGMODE 1for clearing pixelsgGMODE 2for inverting pixels, and
gGMODE Ofor setting pixels again. (0 is the initial setting.)

For example, some white lines can give the robot a furrowed brow:

PROC brow:
gGMODE 1 REM gLINEBY will now clear pixels
gMOVE 10,8 :gLINEBY 100,0
gMOVE 0,4 :gLINEBY -100,0
gGMODE 0
GET
ENDP

(crapHics [10)

OPL

The setting for gGMODE applies to the planes selected by gGREY .g@REY 1 for instancegGMODE
1 would cause gLINEBY to clear pixels in the grey plane g8 ODE 0Oto set pixels in the grey plane.

Constants for the modes are supplied in Const.oph. See the ‘Calling Procedures’ section of the ‘Basics.pdf’

document for details of how to use this file and see Appendix E in the ‘Appends.pdf document for a
listing of it.

For more details of these keywords, see the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

gBUTTON: draw a 3-D button (a picture of a key, not of an application button) enclosing supplied text.
The button can be raised, depressed or sunken. On the Series 5, the button may alsdo@ntiqaeith
amask(see the ‘Bitmaps’ section below).

gBORDER, gXBORDER: draw 2-D/3-D borders.
gINVERT: invert a rectangular area, except for its four corner pixels.

gCOPY: copy a rectangular area from one position on the screen to another. On the Series 3c, both black
and grey planes are copied.

gSCROLL: move a rectangular area from one position on the screen to another, or scroll the contents of
the screen in any direction. On the Series 3c, both black and grey planes are moved.

gPOLY: draw a sequence of lines.

[] gCIRCLE, gELLIPSE: draw a cirlce or ellipse which can be filled or empty.
[] gSETPENWIDTH: draw with a different pen width.

[] gDRAWOBJECT: draw graphics objectThis can be used to draw the “lozenge” used to display the
words ‘City’ and ‘Home’ in the World application.

[] Note that commands such as gSCROLL, which move existing pixels, affect both black and grey planes.
gGREY only restricts drawing and clearing of pixels.

The PRINT command displays text in one font, in a screen area controlled by the FONT or SCREEN
commands. You can, however, display text in a variety of fonts and styles, at any pixel position, with gPRINT.

[
[]

gPRINT also allows you to draw text in grey if you have used the gCOLOR command previously.

gPRINT also lets you draw text to the grey plane, if you have used DEFAULTWIN and gGREY (discussed
earlier).

é You can (to a lesser degree on the Series 3c) control the font and style used by OPL’s other text-drawing

keywords, such as PRINT and EDIT. ‘The text and graphics windows’ at the end of this section.

(crapHics [1D)

OPL

gPRINT is a graphical version of PRINT, and displays a list of expressions in a similar way. Some examples:
gPRINT “Hello”,name$

gPRINT a$

gPRINT “Sin(PI/3) is”,sin(pi/3)

Unlike PRINT, gPRINT does not end by moving to a new line. A comma between expressions is still displayed
as a space, but a semicolon has no eff®RINT used on its own does nothing.

The first character displayed has its left side and baseline at the current position. The baseline is like a line on
lined note paper graphically, this is the horizontal line which includes the lowest pixels of upper case characters.

[P I R

Some characters, such as ‘g’, ', ‘p’, ‘g’ and 'y’, set pixels below the baseline.

After using gPRINT, the current position is at the end of the text so that you can print something else
immediately beyond it. As with other graphics keywords, no error is reported if you try to display text off the
edge of the screen.

While CURSOR ONMiisplays a flashing cursor for ordinary text displayed with PRIITRSOR 1switches on
a cursor for graphical text which is displayed at the current posZIdRSOR OFFemoves either cursor.

The gFONT command sets the font to be used by subsequent gPRINT commands.

A large set of fonts which can be used with gFONT is provided in the Psion’s ROM. In the following list, Swiss
and Arial fonts refer to fonts without serifs while Roman and Times fonts either have serifs (e.g. font 6) or are in
a style designed for serifs but are too small to show them (e.g. font 5 on the Series 3c). Comieroispaced

font. Mono-spacedonts have characters which all have the same width (and have their ‘pixel size’ listed as
width x height); inproportional fonts each character can have a different width.

é Fonts 1,2 and 3 are the Series 3 fonts, used when running in compatibility mode. Therefore these fonts are
not supported on the Series 5.

Font number Series 5 font name height in pixels Series 3c font name size in pixels
1 - - Series 3 normal 8

2 - - Series 3 bold 8

3 - - Series 3 digits 6X6
4 Courier 8 Mono 8x8
5 Times 8 Roman 8

6 Times 11 Roman 11
7 Times 13 Roman 13
8 Times 15 Roman 16
9 Arial 8 Swiss 8

10 Arial 11 Swiss 11
11 Arial 13 Swiss 13
12 Arial 15 Swiss 16
13 Tiny (mono) 4 Mono 6x6

(crapHics [12)

OPL

The special font numbe&9a ($9a on the Series 3c) is set aside to give a machine’s default graphics font; this is
the font used initially for graphics text. The default font is 12 (Arial 15) for the Series 5 and 11 (Swiss 13) for
the Series 3c. SPFONT 12 (11) orgFONT &9a ($9a on the Series 3c) both set the standard font, which
gPRINT normally uses.

[] oOn the Series 5, fonts are identified by a 32-bit UID, rather than a 16-bit value representing the font

position in the ROM as on the Series 3c. Series 5 OPL does however provide a mapping where possible
between Series 3c OPL font IDs and Series 5 OPL font UIDs, but there are inevitably some
incompatibilities.

Therefore gFONT takes a long integer argument rather than an integer. As well as being able to use the
font IDs 4 to 13 (which are automatically converted to long integers for all keywords taking font IDs), you
can also directly specify the fonts by UID by using the definitions listed in the header file Const.oph. (See
the ‘Calling Procedures’ section of the ‘Basics.pdf’ document for details of how to use this file and see
Appendix E in the ‘Appends.pdf document for a listing of it.) A wider range of fonts is also available, as
you will see from Const.oph. These are Arial and Times proportional fonts and Courier mono-spaced font,
each with sizes 8, 11, 13, 15, 18, 22, 27 and 32, Squashed font (which are used for the toolbar in bold
style) and Tiny fonts.

For example, normal Arial proportional font with height 8 pixels has UID given by,
CONST KFontArialNormal8&=268435954
so you could use,

INCLUDE “Const.oph”

gFONT KFontArialNormal8&

See gINFO32 (for the Series 5) or gINFO (for the Series 3c) in the ‘Alphabetic Listing’ section of the
‘Glossary.pdf’ document if you need to find out more information about fonts.

The following programs shows you examples of the fotits. (is displayed to emphasise the mono-spaced
fonts):

L This program displays a variety of fonts, using both the OPL codes for them and their UIDS (the constants
are defined in Const.oph - see above). The two screens should be identical.

INCLUDE “Const.oph”

PROC fonts:
showfont:(4,15,“Courier 8”)
showfont:(5,25,“Times 8”)
showfont:(6,38,“Times 11”)
showfont:(7,53,“Times 13”)
showfont:(8,71,“Times 15”)
showfont:(9,81,"Arial 8”)
showfont:(10,94,“Arial 11”)
showfont:(11,109,“Arial 13")
showfont:(12,127,“Arial 15”)
showfont:(13,135,“Tiny 44")
GET :GCLS
showfontbyuid:(KFontCourierNormal8&,15,“Courier 8”)
showfontbyuid:(KFontTimesNormal8&,25,“Times 8”)
showfontbyuid:(KFontTimesNormall1&,38,“Times 11”7)

(crapHics [18)

OPL

showfontbyuid:(KFontTimesNormal13&,53,“Times 13”)
showfontbyuid:(KFontTimesNormal15&,71,“Times 15”)
showfontbyuid:(KFontArialNormal8&,81,“Arial 87)
showfontbyuid:(KFontArialNormall1&,94,“Arial 11”)
showfontbyuid:(KFontArialNormal13&,109,“Arial 13”)
showfontbyuid:(KFontArialNormall5&,127,“Arial 15”)
showfontbyuid:(KFontTiny4&,135,“Tiny 4”)

ENDP

PROC showfont:(font%,y%,str$)
gFONT font%
gAT 20,y% :gPRINT font%
gAT 50,y% :gPRINT str$
gAT 150,y% :gPRINT “Il1”
ENDP

PROC showfontbyuid:(font&,y%,str$)
gFONT font&
gAT 20,y% :gPRINT font%
gAT 50,y% :gPRINT str$
gAT 150,y% :gPRINT “Il1”
ENDP

|:| PROC fonts:

showfont:(4,15,"Mono 8x8")
showfont:(5,25,"Roman 8”)
showfont:(6,38,“Roman 11")
showfont:(7,53,“Roman 13")
showfont:(8,71,“Roman 16")
showfont:(9,81,“Swiss 8”)
showfont:(10,94,“Swiss 11”)
showfont:(11,109,“Swiss 13")
showfont:(12,127,“Swiss 16")
showfont:(13,135,“Mono 6x6”")
GET

ENDP

PROC showfont:(font%,y%,str$)
gFONT font%
gAT 20,y% :gPRINT font%
gAT 50,y% :gPRINT str$
gAT 150,y% :gPRINT “I!I”
ENDP

GRAPHICS)
4

OPL

The gSTYLE command sets the text style to be used by subsequent gPRINT commands.

Choose from these styles:

gSTYLE 1 bold

gSTYLE 2 underlined
gSTYLE 4 inverse
gSTYLE 8 double height
gSTYLE 16 mono
gSTYLE 32 italic

[] constants for the styles are supplied in Const.oph. See the ‘Calling Procedures’ section of the ‘Basics.pdf’

document for details of how to use this file and see Appendix E in the ‘Appends.pdf’ document for a listing
of it.

The ‘mono’ style is not proportionally spaced - each character is displayed with the same width, in the same way
that PRINT displays characters (by default). A proportional font can be displayed as a mono-spaced font by
setting the ‘mono’ style. See the previous section for the list of mono-spaced and proportional fonts.

Q It is inefficient to use the ‘mono’ style to display a font which is already mono-spaced.

You can combine these styles by adding the relevant numbers together. gSTYLE 12 sets the text style to inverse
and double-height (4+8=12). Here’s an example of this style:

PROC style:
gAT 20,50 :gFONT 11
gSTYLE 12 :gPRINT “Attention!”
GET

ENDP

Use gSTYLE 0 to reset to normal style.

The bold style provides a way to make any font appear bold. Except for the smaller fonts on the Series 3c, most
Psion fonts look reasonably bold already. Note that using the bold style sometimes causes a change of font; if
you use gINFO you may see the font name change.

[] Note that fonts which are always bold are available on the Series 5. Using a bold style with these fonts

results in a double bold font. It is not necessary to use these fonts to produce bold font; you can of course
use just the normal fonts in a bold style.

gPRINT normally displays text as if writing it with a pen - the pixels that make up each letter are set, and that is
all. If you're using areas of the screen which already have some pixels set, or even have all the pixels set, use
gTMODE to change the way gPRINT displays the text.

gTMODE controls the display of text in the same way as gGMODE controls the display of lines and boxes. The
values you use with gTMODE are similar to those for gGMO@®BVIODE 1for clearing pixelsgTMODE 2

for inverting pixels, ang TMODE Ofor setting pixels again. There is algBMODE 3which sets the pixels of

each character while clearing the character’s background. This is very useful as it guarantees that the text is
readable.

(crapHics | 15)

OPL

(] Asfor gGMODE, the setting for gTMODE applies to the planes selected by gGREYg@REY 1 for

instancegTMODE 1would cause gPRINT to clear pixels in the grey planegddODE 0to set pixels in
the grey plane.

[] constants for the modes of gTMODE are supplied in Const.oph. See the ‘Calling Procedures’ section of

the ‘Basics.pdf’ document for details of how to use this file and see Appendix E in the ‘Appends.pdf’
document for a listing of it.

These procedures (for the Series 5 and the Series 3c respectively) shows the various effects possible via
gTMODE:

|:| PROC tmode:

DEFAULTWIN 2
gFONT 11 :gSTYLE O
gAT 160,0 :gFILL 160,80,0 REM Black box
gAT 220,0 :gFILL 40,80,1 REM White box
gAT 180,20 :gTMODE 0 :gPRINT “ABCDEFGHIJK”
gAT 180,35 :gTMODE 1 :gPRINT “ABCDEFGHIJK”
gAT 180,50 :gTMODE 2 :gPRINT “ABCDEFGHIJK”
gAT 180,65 :gTMODE 3 :gPRINT “ABCDEFGHIJK”
gCOLOR $50,$50,$50
gAT 160,80 :gFILL 160,80,0 REM Grey box
gAT 220,80 :gFILL 40,80,1 REM White box
gAT 180,100 :gTMODE 0 :gPRINT “ABCDEFGHIJK”
gAT 180,115 :gTMODE 1 :gPRINT “ABCDEFGHIJK”
gAT 180,130 :gTMODE 2 :gPRINT “ABCDEFGHIJK”
gAT 180,145 :gTMODE 3 :gPRINT “ABCDEFGHIJK”
GET
ENDP

|:| PROC tmode:

DEFAULTWIN 1 REM enable grey
gFONT 11 :gSTYLE O

gAT 160,0 :gFILL 160,80,0 REM Black box

gAT 220,0 :gFILL 40,80,1 REM White box

gAT 180,20 :gTMODE 0 :gPRINT “ABCDEFGHIJK”
gAT 180,35 :gTMODE 1 :gPRINT “ABCDEFGHIJK”
gAT 180,50 :gTMODE 2 :gPRINT “ABCDEFGHIJK”
gAT 180,65 :gTMODE 3 :gPRINT “ABCDEFGHIJK”

gGREY 1
gAT 160,80 :gFILL 160,80,0 REM Grey box
gAT 220,80 :gFILL 40,80,1 REM White box

gAT 180,100 :gTMODE 0 :gPRINT “ABCDEFGHIJK”
gAT 180,115 :gTMODE 1 :gPRINT “ABCDEFGHIJK”
gAT 180,130 :gTMODE 2 :gPRINT “ABCDEFGHIJK”
gAT 180,145 :gTMODE 3 :gPRINT “ABCDEFGHIJK”
GET

ENDP

(crapHics | 16)

OPL

o gPRINTB: display text left aligned, right aligned or centred, in a cleared box. The gTMODE setting is
ignored.

[with gGREY 1, only grey background pixels in the box are cleared andg@REY 0, only black
pixels; withgGREY 2 all background pixels in the box are cleared.

. gXPRINT: display text underlined/highlighted.
. gPRINTCLIP: display text clipped to whole characters.

. gTWIDTH: find width required by text.

All of these keywords take the current font and style into account, and warkilogle string. On the Series 5,
they display text in the colour specified by gCOLOR. On the Series 3c, they display the text in black or grey
according to the current setting of gGREY.

So far, you've used the whole of the screen for displaying graphics. You can, howevendses-
rectangular areas of the screen.

[] @ Sprites (described in the ‘OPX.pdf’ document) can display non-rectangular shapes.

OPL allows a program to use up to sixty-four windows at any one time.

[] @ Sprites (described in the ‘Advanced.pdf’ document) can display non-rectangular shapes.

OPL allows a program to use up to eight windows at any one time.

Each window has an ID number, allowing you to specify which window you want to work with at any time.

When a program first runs, it has one window calleddgfault windowlts ID is 1, it is the full size of the
screen, and initially all graphics commands operate on it. (This is why ‘0,0’ has so far referred to the top left of
the screen: it is true for the default window.)

Other windows you create will have IDs from 2 to 64 (2 to 8 on the Seried/Ben you make another
window it becomes the current window, and all subsequent graphics commands operate on it.

The first half of this section used only the default window. However, everything actually applies to the current
window. For example, if you make a small window current and try to draw a very long line, the current position
moves off past the window edge, and only that part of the line which fits itlkdew is displayed.

For OPL graphics keywordppsitions apply to the window you are using at any given tim&he point 0,0
means the top left corner of the current window, not the top left corner of the screen.

[] Each window can be created in any of the 3 colour modes by specifying the last argument in the

gCREATE command (see below and the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document).
gCOLOR can be used to specify the current pen colour and gSETPENWIDTH to specify the pen width.
The default is 4-colour mode, as for the default window.

(crapHics [17)

OPL

For the default window, the special command DEFAULTWIN is required to change colour modes because
that window is automatically created for you in 4-colour mode; DEFAULTWIN clears the default window
and resets colour mode to that specified. All other windows museheedin the colour mode in which

they are required: it may not be changed once they are created.

Once a window has been created with a certain colour mode, colours specified by gCOLOR work in the
exactly the same way as in the default window.

[] Each window can be created with a grey plane if required, in which case gGREY is used to specify

whether the black plane, the grey plane or both should be used for all subsequent graphics commands until
the next call to gGREY, exactly as described in the first half of this section.

For the default window, the special command DEFAULTWIN is required to enable grey because that
window is automatically created for you with only a black plane; DEFAULTWIN 1 closes the default
window and creates a new one which has a grey plane. All other windows nousatszl with a grey

plane if grey is required.

Once a window has been created with a grey plane, grey is used in precisely the same way as in the default
window with grey enabledyGREY 0 directs all drawing to the black plane orgzREY 1 to the grey

plane only andjGREY 2 to both planeggGREY 1 andgGREY 2 raise an error if the current window

does not have a grey plane.

gGREY, gGMODE, gTMODE, gFONT and gSTYLE can all be used with created windows in exactly the same
way as with the default window, as described eaffirey change the settings for the current window only;
all the settings are remembered for each window.

The gCREATE function sets up a new window on the screen. It returns an ID number for the window.
Whenever you want to change to this window, use gUSE with this ID.

[] You can create a window with any of the three colour modes by specifying the last optional parameter to
gCREATE.

Here is an example using gCREATE and gUSE, contrasting the point 20,20 in the created window with
20,20 in the default window.

PROC windows:
LOCAL id%
id%=gCREATE(60,40,320,30,1,2) REM 16-colour mode
gBORDER 0 :gAT 20,20 :gLINEBY 0,0
gPRINT “ 20,20 (new)”
GET
gUSE 1 :gAT 20,20 :gLINEBY 0,0
gPRINT “ 20,20 (default)”
GET
gUSE id%
gCOLOR $88,$88,$88 REM mid grey
gPRINT “ Back”
gCOLOR 0,0,0 REM black
gPRINT “ (with 16 colours)”
GET
ENDP

(crapHics | 18)

OPL

The lineid%=gCREATE(60,40,320,30,1,2) creates a window with its top left corner at 60,40 on

the screen. The window is set to be 320 pixels wide and 30 pixels deep. (You can use any integer values
for these arguments, even if it creates the window partially or even totally off the screen.) The fifth
argument to gCREATE specifies whether the window should immediately be visible or not; 0 means
invisible, 1 (as here) means visible. The sixth argument specifies the colour mode; 0 means 2-colour mode,
1 means 4-colour mode and 2 (as here) means 16 colour mode. If the sixth argument is not supplied at all
(e.g.id%=gCREATE(60,40,320,30,1)) the window will have the default 4-colour mode.

Note that 64 drawables (including the default window) may be open at any time, although it is
recommended that you use as few windows as possible at any one time. Eight would be a sensible
maximum number of windows in practice, although bitmaps may also be used in addition to windows.

[] You can create a window with only a black plane or with both a black and a grey plane. You cannot create
a window with just a grey plane.

Here is an example using gCREATE and gUSE, contrasting the point 20,20 in the created window with
20,20 in the default window.

PROC windows:
LOCAL id%
id%=gCREATE(60,40,240,30,1,1)
gBORDER 0 :gAT 20,20 :gLINEBY 0,0
gPRINT “ 20,20 (new)”
GET
gUSE 1 :gAT 20,20 :gLINEBY 0,0
gPRINT “ 20,20 (default)”
GET
gUSE id%
gGREY 1 REM draw grey
gPRINT “ Back”
gGREY 0
gPRINT “ (with grey)”
GET

ENDP

The lineid%=gCREATE(60,40,240,30,1,1) creates a window with its top left corner at 60,40 on

the screen. The window is set to be 240 pixels wide and 30 pixels deep. (You can use any integer values
for these arguments, even if it creates the window partially or even totally off the screen.) The fifth
argument to gCREATE specifies whether the window should immediately be visible or not; 0 means
invisible, 1 (as here) means visible. The sixth argument specifies whether the window should have a grey
plane or not; 0 means black only, 1 (as here) means black and grey. If the sixth argument is not supplied at
all (e.g.id%=gCREATE(60,40,240,30,1)) the window will not have a grey plane.

gCREATE automatically makes the created window the current window, and sets the current position in it to
0,0. It returns an ID number for this window, which in this example is saved in the vadfable

ThegBORDER 0command draws a border one pixel wide around the current window. Here this helps show the
position and size of the window. (JBORDER can draw a variety of borders. You can even display the 3-D style
borders seen in menus and dialogs, with the gXBORDER keyword.)

The program then sets the pixel at 20,20 in this new window, g&ilNEBY 0,0
gUSE 1 goes back to using the default window. The program then shows 20,20 in this window.

Finally, gUSE id% goes back to the created window again, and a final message is displayed, in grey and black.

(crapHics |19)

OPL

Note thateach window has its own current positionThe current position in the created window is
remembered while the program goes back to the default windlbtihe other settings, such as the font, style
and grey setting are also remembered.

When you've finished with a particular window, close it with gCLOSE followed by its ID - for example,
gCLOSE 2. You can create and close as many windows as you like, as long as there are only 64 (8 on the Series
3c) or fewer open at any one time.

If you close the current window, the default window (ID=1) becomes current.

An error is raised if you try to close the default window.

Windows can overlap on the screen, or even hide each other entirely. Use the gORDER command to control the
foreground/background positions of overlapping windows.

gORDER 3,1 sets the window whose ID is 3 to be in the foreground. This guarantees that it will be wholly
visible.gORDER 3,2 makes it second in the list; unless the foreground window overlaps it, it too will be
visible.

Any position greater than the number of windows you have is interpreted as the end of@RIBER 3,9
will therefore always force the window whose ID is 3 to the background, behind all others.

S Note in particular that making a window the current window with gUSE does not bring it to the

foreground. You can make a background window current and draw all kinds of things to it, but nothing
will happen on the screen until you bring it to the foreground with gORDER.

When a window is first created with gCREATE it always becomes the foreground window as well as the current
window.

If you are going to use several drawing commands on a particular window, you may like to make it invisible
while doing so. When you then make it visible again, having completed the drawing commands, the whole
pattern appears on the screen in one go, instead of being built up piece by piece.

UsegVISIBLE ON andgVISIBLE OFF to perform this function on the current window. You can also make
new windows invisible as you create them, by using 0 as the fifth argument to the gCREATE command, and you
can hide windows behind other windows.

To make the graphics cursor appear in a particular window, use the CURSOR command with the ID of the
window. It will appear flashing at the current position in that window, provided it is not obscured by some other
window.

The window you specify does not have to be the current window, and does not become current; you can have
the cursor in one window while displaying graphical text in another. If you want to move to a different window
and put the graphics cursor in it, you must use both gUSE and CURSOR.

Since the default window always has an ID oEURSOR 1will, as mentioned earlier, put the graphics cursor
in it.
CURSOR OFF turns off the cursor, wherever it is.

(crapHics |20)

OPL

INFORMATION ABOUT YOUR WINDOWS

You don’t have to keep a complete copy of all the information pertaining to each window you use. These
functions return information about the current window:

. gIDENTITY returns its ID number.
J gRANK returns its foreground/background position, from 1 to 8.
. gWIDTH and gHEIGHT return its size.

o gORIGINX and gORIGINY return its screen position.

. [] gINFO32 returns information about the font, style, colour setting, overwrite modes and cursor in use.

. [] gINFO returns information about the font, style, grey setting, overwrite modes and cursor in use.

. gX and gY return the current position.

OTHER WINDOW KEYWORDS

o gSETWIN changes the position, and optionally the size, of the current window.

Q You can use this command on the default window, if you wish, but you must also use the SCREEN com-

mand to ensure that tiext window(the area for PRINT commands to use) is wholly contained within the
default window. See ‘The text and graphics windows’, later in this section.

o gSCROLL scrolls all or part of both black and grey planes of the current window.
J gPATT fills an area in the current window with repetitions of another window, or with a shaded pattern.

o gCOPY copies an area from another window into the current window, or from one position in the current
window to another.

& On the Series 5, it is unadvisable to use gCOPY to copy from windows as it is very slow. It should only be
used for copying from bitmaps to windows or other bitmaps.

. gSAVEBIT saves part or all of a window abitmap file

[] Ifawindow has a grey plane, the planes are saved as two bitmaps to the same file with the black plane
saved first and the grey plane saved next. gLOADBIT, described later, can be used to load bitmap files.

o gPEEKLINE reads back a horizontal line of data in the specified mode (for the Series 5: see the ‘Alpha-
betic Listing’), or from either the black or grey plane (on the Series 3c) of a specified window.

[] COPYING GREY BETWEEN WINDOWS

The commands gCOPY and gPATT can use two windows and therefore special rules are needed for the cases
when one window has a grey plane and the other does not.

With gGREY 0 in the destination window, only the black plane of the source is copied.

GRAPHICS)
4

OPL

With gGREY 1 in the destination window, only the grey plane of the source is copied, unless the source has
only one plane in which case that plane is used as the source.

With gGREY 2 in the destination window, if the source has both planes, they are copied to the appropriate
planes in the destination window (black to black, grey to grey); if the source has only one plane, it is copied to
both planes of the destination.

This section should provide a taste of some of the more exotic things you can do with OPL graphics.

A bitmapis an area in memory which acts just like an off-screen window. You can create bitmaps with
gCREATEBIT.

L] s possible to create bitmaps in any of the three colour modes by specifying the optional third argument

when using gCREATEBIT. The default is 2-colour mode. Note, however, that black and white bitmaps
differ from black and white windows. In particular, if you draw in 16 colours to a black and white bitmap

then greys appear as dithered black and white, whereas if you draw exactly the same to a 2-colour graphics
window you just get dark greys mapped to black and light greys mapped to white. This enables grey
printing on black and white printers.

A further benefit is that the file size will be smaller if the bitmap is saved, with just 1 bpp used for black
and white bitmaps.

Note that 64 drawables (including the default window) may be open at any time. Although, as mentioned
above, using lots of windows should be avoided in practice, you can sensibly use as many bitmaps as you
need up to the maximum.

[] Note thata bitmap does not have two planes so that gGREY cannot be used.

Bitmaps have the following uses:

o You can manipulate an image in a bitmap before copying it with gPATT or gCOPY to a window on the
screen. This is generally faster than manipulating an image in a hidden window.

. You can loaditmap filesinto bitmaps in memory using gLOADBIT, then copy them to on-screen win-
dows using gCOPY or gPATT.

[] ifablack and grey window was saved to file as two bitmaps using gSAVEBIT, you must load them
separately into two bitmaps in memory, and copy them one at a time to the respective planes of a window.

OPL treats a bitmap as the equivalent of a window in most cases:
J Both are identified by ID numbers. Only one window or bitmap is current at any one time, set by gUSE.
. If you use bitmaps as well as windows, tb&l number must be 64 (8 on the Series 3c) or fewer.

J The top left corner of the current bitmap is still referred to as 0,0, even though it is not on the screen at all.
Together, windows and bitmaps are knownli@svables- places you can draw to.

Most graphics keywords can be used with bitmaps in the same way as with windows, but remember that a
bitmap corresponds to only one plane in a window. Once you have drawn to it, you might copy it to the
appropriate plane of a window.

(crapHics |22)

OPL

The keywords that can be used with bitmaps include: gLINEBY, gLINETO, gBOX, gFILL, gCIRCLE (Series 5
only), gELLIPSE (Series 5 only), gCOLOR (Series 5 only), gSETPENWIDTH (Series 5 only), gUSE,
gBORDER, gCLOSE, gCLS, gCOPY, gGMODE, gFONT, gIDENTITY, gPATT, gPEEKLINE, gSAVEBIT,
gSCROLL, gTMODE, gWIDTH, gHEIGHT, gINFO32 (Series 5) and gINFO (Series 3). These keywords are
described earlier in this section.

There are several keywords that require an understandimggis In some cases the mask is a bitmap file, e.g.
gBUTTON (see earlier in this section and also the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ file) and for
ICON (see the ‘Advanced.pdf document), and in some cases it is an integer contéitingask e.g. for
POINTERFILTER (see again ‘Advanced.pdf’ document).

In all these cases, however, the principle is the same. The pixels or bits which are set in the mask specify pixels
or bits in some other argument which are to be used. Pixels and bits which are clear in the mask specify pixels
and bits that are not to be used from the other argument.

For example, when using gBUTTON with identical bitmap and mask, cleared pixels on the bitmap are drawn in
the background colour of the button (i.e. they are clear) while set pixels are drawn on the button as they appear
on the bitmap. This is generally how buttons on Series 5 toolbars appear.

The Psion’s screen is usually updated whenever you display anything on it. gUPDATE OFF switches off this
feature. The screen will be updated as few times as possible, although you can force an update by using the
gUPDATE command on its own. (An update is also forced by GET, KEY and by all graphics keywords which
return a value, other than gX, gY, gWIDTH and gHEIGHT).

This can result in a considerable speed improvement in some cases. You might, for exargplBDASEE
OFF, then a sequence of graphics commands, followeglBDATE You should certainly usgyPDATE OFF
if you are about to write exclusively to bitmaps.

gUPDATE ONreturns to normal screen updating.
[] As mentioned previousl , a window with both black and grey planes takes longer to move or scroll than a
p y grey p g
window with only a black plane. So avoid creating windows with unnecessary grey planes.
Also, remember that scrolling and moving windows require every pixel in a window to be redrawn.

The gPOLY command draws a sequence of lines, as if by gLINEBY and gMOVE commands. If you have to
draw a lot of lines (or dots, withLINEBY 0,0), gPOLY can greatly reduce the time taken to do so.

gCLOCK displays or removes a running clock showing the system time. The clock can be digital or
conventional, and can use many different formats. See the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’
document for full details.

(crapHics | 28)

OPL

If you have a user-defined font you can load it into memory with gLOADFONT.

[gLOADFONT returns a file ID, which can be used only with gUNLOADFONT. The maximum number of

font files which may be loaded at any one time is 16. To use the fonts in a loaded font you need to use the
UIDs specified in the font file itself.

[] This returns an ID for the font; use this with gFONT to make the font current. The gUNLOADFONT
command removes a user-defined font from memory when you have finished using it.

You can use four extra arguments with the CURSOR command. Three of these specify the ascent, width and
height of the cursor. The ascent is the number of pixels (-128 to 127) by which the top of the cursor should be
above the baseline of the current font. The height and width arguments should both be between 0 and 255. For
exampleCURSOR 1,12,4,14 sets a cursor 4 pixels wide by 14 high in the default window (ID=1), with the
cursor top at 12 pixels above the font baseline.

If you do not use these arguments, the cursor is 2 pixels wide, and has the same height and ascent as the current
font.

By default the cursor has square corners, is black and is flashing. Supply the fifth argument as 2 for non-flashing
or 4 for grey (1 for a rounded cursor is also available on the Series 3c). You can add these together - e.g. use 6
for a grey, non-flashing cursor.

Note that the gINFO32 and gINFO (Series 5 and Series 3c respectively) command returns information about the
cursor and font.

PRINT displays mono-spaced text in te&t window You can change the text window font (i.e. that used by
PRINT) using the FONT keyword.

[] You can use any of those fonts listed in Const.oph; see the ‘Calling Procedures’ for an explanation of how

to use this file and Appendix E in the ‘Appends.pdf’ document for a listing of it. Initially Courier 11 is
used on the Series 5.

It should be noted that when using the console keywords PRINT, AT, SCREEN, etc. the use of Series 5
proportional fonts such as Arial and Times may produce some unexpected behaviour because it is assumed
in all cases that mono-spaced font is being used. The reason for this is so that use of keywords such as AT,
SCREEN in the console is independent of whether the font is proportional or monospaced. An example of
this behaviour may be seen when using inverted text: the rectangle to invert is calculated assuming that the
font is mono-spaced, and hence the area inverted is larger than the text printed when using a proportional
font. Another example is that a new line will be used before it appears necessary when using a

proportional font, since the number of characters which will fit on a line is also calculated assuming the

font is mono-spaced.

[] You can use any of those fonts listed earlier in this section in the description of gFONT; initially font 4 is
used on the Series 3c.

The text window is in fact part of the default graphics window. If you have other graphics windows in front of
the default window, they may therefore hide any text you display with PRINT.

(crapHics |24)

OPL

Initially the text window is very slightly smaller than the default graphics window which is full-screen size.
They are not the same becatlse text window height and width always fits a whole number of characters
of the current text window font. If you use the FONT command to change the font of the text window, this
first sets the default graphics window to the maximum size that will fit in the screen (excluding any status
window on the Series 3c) and then resizes the text window to be as large as possible inside it.

You can also use the STYLE keyword to set the style for all characters subsequently written to the text window.
This allows the mixing of different styles in the text window.

[] Youcan only use those styles which do not change the size of the characters - i.e. inverse video and
underline. (Any other styles will be ignored.)

Use the same values as listed for gSTYLE, earlier in this section.

To find out exactly where the text window is positioned, B&&REENINFO info%() . This setsnfo%(1)/
info%(2) to the number of pixels from the left/top of the default window to the left/top of the text window.
(These are called the margingfo%(7) andinfo%(8) are the text window’s character width and height
respectively.

@ The margins are fully determined by the font being used and therefore change from their initial value only
when FONT is used. You cannot choose your own margins. gSETWIN and SCREEN do not change the
margins, so you can use FONT to select a font (also clearing the screen), followed by SCREENINFO to find
out the size of the margins with that font, and finally gSETWIN and SCREEN to change the sizes and
positions of the default window and text window taking the margins into account (see example below). The
margins will be the same after calling gSETWIN and SCREEN as they were after FONT.

It is not generally recommended to use both the text and graphics windows. Graphics commands provide much
finer control over the screen display than is possible in the text window, so it is not easy to mix the two.

If you do need to use the text window, for example to use keywords like EDIT, it's easy to use SCREEN to
place it out of the way of your graphics windows. You can, however, use it on top of a graphics window - for
example, you might want to use EDIT to simulate an edit box in the graphics window. Use gSETWIN to change
the default window to about the size and position of the desired edit box. The text window moves with it - you
must then make it the same size, or slightly smaller, with the SCREEN command. Use 1,1 as the last two
arguments to SCREEN, to keep its top left corner fig&eRDER 1,1 will then bring the default window to the

front, and with it the text window. EDIT can then be used.

Here is an example program which uses this technique - moving an ‘edit box’, hiding it while you edit, then
finally letting you move it around.

PROC gsetwl:
LOCAL a$(100),w%,h%,g%$(1),factor%,info%(10)
LOCAL margx%,margy%,chrw%,chrh%,defw%,defh%
SCREENINFO info%() REM get text window info
margx%-=info%(1) :margy%=info%(2)
chrw%=info%(7) :chrh%=info%(8)
defw%=23*chrw%+2*margx% REM new default window width
defh%=chrh%-+2*margy% REM ... and height
w%=gWIDTH :h%=gHEIGHT
gSETWIN w%/4+margx%,h%/4+margy%,defw%,defh%

SCREEN 23,1,1,1 REM text window

PRINT “Text win:”; :GET

gCREATE(W%*0.1,h%*0.1,w%*0.8,h%*0.8,1) REM new window
gPATT -1,gWIDTH,gHEIGHT,0 REM shade it

gAT 2,h%*0.7 :gTMODE 3

(crapHics | 25)

OPL

gPRINT “Graphics window 2”

gORDER 1,0 REM back to default+text window

EDIT a$ REM you can see this edit

gORDER 1,65 REM to background - could use 9 for Series 3c

CLS

as="

PRINT “Hidden:”;

GIPRINT “Edit in hidden edit box”

EDIT a$ REM YOU CAN'T SEE THIS EDIT

GIPRINT

gORDER 1,0 :GET REM now here it is

gUSE 1 REM graphics go to default window

DO REM move default/text window around
CLS

PRINT “U,D,L,R,Quit";
g$=UPPER$(GET$)
IF KMOD=2 REM Shift key moves quickly
factor%=10
ELSE
factor%=1
ENDIF
IF g$="U"
gSETWIN gORIGINX,gORIGINY-factor%
ELSEIF g$="D"
gSETWIN gORIGINX,gORIGINY+factor%
ELSEIF g$="L"
gSETWIN gORIGINX-factor%,gORIGINY
ELSEIF g$="R”
gSETWIN gORIGINX+factor%,gORIGINY
ENDIF
UNTIL g$="Q"” OR g$=CHR$(27)
ENDP

GRAPHICS)
4

OPL

FRIENDLIER INTERACTION

Everyday OPL programs can use the same graphical interface seen throughout the Psion:

Menus offer lists of options for you to choose from. You can also select these options with
shortcut keys like Ctrl+A, Ctrl+B (Psion-A, Psion-B on the Series 3c) etc.

Dialogs let a program ask for all kinds of information numbers, filenames, dates and times
etc. in one go.

Screen messages such as ‘Busy’ are available.

On the Series 3c, the status window is also available.

Menu keywords begin with anM and dialog keywords with aD. In this manual a lower case is
used for these letters for examplenINIT and dEDIT but you can type them using upper or lower
case letters.

CFRIENDLIER INTERACTION ‘

OPL

Menus provide a simple way for any reasonably complex OPL program to let you choose from its various
options.

To display menus in OPL generally takes three basic steps:
e Use the mINIT command. This prepares OPL for new menus.
e Use the mCARD command (and the mCASC command on the Series 5) to define each menu.

e Use the MENU function to display the menus.

You use the displayed menus like any others on the Psion. Use the arrow keys to move around the menus. Press
Enter or an option’s shortcut key (or on the Series 5, tap with the pen) to select an option, or press Esc to cancel
the menus without making a choice. In either case, the menus are removed, the screen redrawn as it was, and
MENU returns a value to indicate the selection made.

The first argument to MCARD is the name of the menu. This will appear at the top of the menu; the names of all
of the menus form a bar across the top of the screen.

From one to eight options on the menu may be defined, each specified by two arguments. The first is the option
name, and the second the keycode for a shortcut key. This specifies a key which, when pressed together with the
Ctrl key (Psion key on the Series 3c), should select the option. (Your program must still handle shortcut keys
which are pressed without using the menu.) It is easiest to specify the shortcut &g ithagives the value

for a.

If an upper case character is used for the shortcut key keycode, the Shift key must be pressed as well to select the
option (on the Series 5, the shortcut key will appear as ‘Shift+Ctrl+A’ for example). If you supply a keycode for

a lower case character, the option is selectedwithout the Shift key pressed. Both upper and lower case

keycodes for the same character can be used in the same menu (or set of menus). This feature may be used to
increase the total number of shortcut keys available, and is also commonly used for related menu oftions e.g.
(%zon the Series 3c¢) might be used for zooming to a larger for#odfih for zooming to a smaller font (as

in the built-in applications).

For example,
MCARD “Comms”,“Setup”,%s, “Transfer”, %t

defines a menu with the tittommsWhen you move to this menu usidgor” , you'll see it has the two
optionsSetup andTransfer , with shortcut keys Ctrl+S and Ctrl+T (Psion-S and Psion-T on the Series 3c)
respectively (and no Shift key required). On the other hand,

MCARD “Comms”,“Setup”,%S,“Transfer”,%T

would give these options the shortcut keys Shift+Ctrl+S and Shift+Ctrl+T (Shift-Psion-S and Shift-Psion-T on
the Series 3c).

The options on a large menu may be divided into logical groups (as seen in many of the menus for the built-in
applications) by displaying a line under the final option in a group. To do this, you must pass the negative value
corresponding to the shortcut key keycode for the final option in the group. For ex&tfoknecifies shortcut

key Shift+Ctrl+A (Shift-Psion-A on the Series 3c) and displays a grey line under the associated option in the
menu.

(FRIENDLIER INTERACTION [25)

OPL

Each subsequent mCARD defines the next menu to the right. A large OPL application might use mCARD like
this:

MCARD “File”,“"New”,%n,“Open”,%o0,"“Save”,%s
MCARD “Edit”,“Cut”,%Xx,“Copy”,%c,“Paste”,-%v,"Eval”,%e
MCARD “Search”,"First”,%f,“Next”,%g,“Previous”,%p

On the Series 5, more advanced menu features are available in addition to the more basic features described
above. These are as follows:

* menu items without shortcuts

* menu items that are dimmed

e menu items with checkboxes

* menu items with option buttons (sometimes known as radio buttons)
e cascaded menus

e popup menus (see ‘Displaying menus’ below).

It is possible to have menu items without shortcuts, by specifying shortcut values between 1 and 32. The value
specified is still returned if the item is selected.

Dimming, checkboxes and option buttons are controlled by adding the following values to the shortcut keycode
(the constants are found in Const.oph. See the ‘Calling Procedures’ section of the ‘Basics.pdf’ document for
details of how to use this file and Appendix E in the ‘Appends.pdf’ document for a listing of it.):

constant name value effect

KMenuDimmed% $1000 item dimmed

KMenuCheckBox% $0800 item has checkbox
KMenuOptionStart% $0900 item starts option button list
KMenuOptionMiddle% $0A00 item in middle of option button list
KMenuOptionEnd% $0B00 item ends option button list
KMenuSymbolOn% $2000 symbol on (checkbox/option button)
KMenuSymbolindeterminate% $4000 symbol indeterminate

Dimming a menu item makes it unavailable and on trying to select it, the info print ‘This item is not available’ is
automatically displayed. Items with checkboxes have a tick symbol on or off on their left hand side to show
whether or not they have been selected. The start, middle and end option buttons are for specifying a group of
related items that can be selected exclusively (i.e. if one item is selected then the others are deselected). The
number of middle option buttons is variable.

Adding in theKMenuSymbolOn%flag sets the tick on a checkbox or the button on an option button item on.
The display of ticks and option buttons is automatically changed appropriately when you select one of these
items, but your program needs to maintain the state of any checkbox or option button between displays of the
menu.

A single menu card can have more than one set of option buttons and checkboxes, but option buttons in a set
should be kept together. For speed, OPL does not check the consistency of these items’ specification.

(FRIENDLIER INTERACTION [26)

OPL

Cascadedtems on which less important menu items can be displayed may also be created. The cascade must be
defined before use in a menu card. The following is an example of a ‘Bitmap’ cascade under the File menu of a
possible OPL drawing application.

mCASC “Bitmap”,“Load”,%L,"Merge”,%M
mCARD “File”,“"New”,%n,“Open”,%o0,"“Save”,%s,"Bitmap>*,16,“Exit”,%e

The trailing> character specifies that a previously defined cascade item is to be used in the menu at this point: it is
not displayed in the menu item. A cascade has a filled arrow head displayed along side it in the menu. The cascade
title in mCASC is also used only for identification purposes and is not displayed in the cascade itself. This title
needs to be identical to the menu item text apart fronwtheor efficiency, OPL doesn’t check that a defined
cascade has been used in a menu and an unused cascade will simply be ignored.

Shortcut keys used in cascades may be added with the appropriate constant values to enable checkboxes, option
buttons and dimming of cascade items.

As is typical for cascade titles, a shortcut value of 16 is used in the example above. This prevents the display or
specification of any shortcut key. However, it is possible to define a shortcut key for a cascade title if required, for
example to cycle through the options available in a cascade.

The MENU function displays the menus defined by mINIT and mCARD, and waits for you to select an option.

It returns the shortcut key keycode of the option selected, in the case supplied by you, whether you used Enter or
the shortcut key itself (or the pen on the Series 5) to select it. If you supplied a negative shortcut key keycode for
an underlined option, it is converted to its positive equivalent.

If you cancel the menus by pressing Esc, MENU returns 0.

[] When a set of menus is displayed, the highlight is positioned to the menu and option that the user selected
previously (or, if no menus have previously been displayed, to the first option in the first menu).

This works only if your program has only one set of menus. If you have another set of menus, the cursor is
still set to the position of the menu and option selected in the first set of menus (if that position exists in the
new menus).

To avoid this confusion on the Series 3c or to maintain the position of the highlight across menu calls on the
Series 5, usm%=menu(init%) and setnit% to zero the first time a set of menus is displayed. The cursor

will in this case be positioned to the first option in the first mait¥% is set to a value which specifies the

menu and option selected, and should be passed to MENU the next time that same set of menus is called If your
program has more than one set of menus, you should have a diffi#fént variable for each set of menus.

A popup menu which appears at a specified point on the screen, may also be defined and drawn using mPOPUP.
Note that popup menus have only one pane and need not and should not be within the mINIT...MENU
structure. mMPOPUP returns the value of the shortcut code in the same way as MENU. For example,

mPOPUP(0,0,0,“Continue”,%c,"“Exit”,%e)

(FRIENDLIER INTERACTION [27)

OPL

The first two arguments specify the position of one corner and the third argument specifies which corner this is.
This third argument takes values as follows,

corner
0 top left

1 top right

2 bottom left
3 bottom right

Thus, the example above specifies a popup menuOjithas its top left-hand corner and with the items
‘Continue’ and ‘Exit’, with the shortcuts Ctrl+C and Ctrl+E respectively.

You can add the same values to the shortcut key keycode as those used with mCARD and mCASC to display
dimmed items, checkboxes and option buttons. Note, however, that cascades in popup menus are not supported.
For example,

mPOPUP(0,0,0,“Viewl”,%v OR $2900,“View2”,%b OR $A00,“View3",%n OR $B00)

would display a popup menu with option buttons, with the symbol initially set on dfighd item $2000 is
ORed into it as well a$900).

You must ensure that you do not use the same shortcut key twice when defining the menus, as OPL does not
check for this.

Each menu definition uses some memory, so ‘No system memory’ errors are possible.

Don'’t forget to use mINIT before you begin defining the menus.

If the menu titles defined by mCARD are too wide in total to fit on the screen (wider than 40 characters on the

Series 5), MENU will raise a “Too wide’ error.

[] Shortcut valuesnust be alphabetic character codes or numbers between the values of 1 and 32. Any other
values will raise an ‘Invalid arguments’ error.

Note also that on the Series 5, a menu is discarded when an item fails to be added successfully. In effect
the previous mINIT statement is discarded together with any previous mCARD statements. This avoids the
problem of trying to use a badly constructed menu item.

It is therefore incorrect to ignore MCARD errors by having an ONERR label around an mCARD call (see
the ‘Errors.pdf document for more details). If you do, the menu is discarded and a ‘Structure fault’ will
then be raised on using mCARD or MENU without first using mINIT again.

[when choosing shortcut keys, do not use those such as the number keys which produce different characters
when used with the Psion key. Unless you have a good reason not to, stiakievittandA toZ.

(FRIENDLIER INTERACTION [28)

OPL

A MENU EXAMPLE

This procedure allows you to press the Menu key and see a menu. You might instead be typing a number or
some text into the program, or moving around in some way with the arrow keys, and this procedure returns any
such keypresses. You could use this procedure instead of a simple GET whenever you want to allow a menu to
be shown, and its shortcut keys to work.

Each of the options in the menus have a corresponding procedure prameglus the shortcut key letter so for
example, the option with shortcut key Ctrl+N (Psion-N) is handled by the proqadare .

This procedure uses the technique of calling procedures by strings, as described in the ‘Advanced.pdf
document.

[] pPrOC kget%:
LOCAL k%,h$(9),a$(5)

h$="nosciefgd” REM our shortcut keys
WHILE 1
k%=GET
IF k%=$122 REM Menu key
mINIT

mMCARD “File”,“"New”,%n,“Open”,%o0,"“Save”,%s

mCARD “Edit",“Copy”,%c,"Insert”,-%i,"Eval”,%e

MCARD “Search”,“First”,%f,“Next”,%g,“Previous”,%d

k%=MENU

IF k% AND (LOC(h$,CHR$(k%))<>0) REM MENU CHECK
a$="proc”+CHR$(k%)

@(a9): REM procn:, proco;, ...
ENDIF REM END OF MENU CHECK
ELSEIF KMOD AND $4 REM shortcut key pressed directly?
k%=k%+$40 REM remove Ctrl modification
IF LOC(h$,CHR$(k%)) REM DIRECT SHORTCUT KEY CHECK
a$="proc"+CHR$(k%)
@(a$%): REM procn:, proco;, ...
ENDIF REM END OF DIRECT SHORTCUT KEY CHECK
ELSE REM some other key
RETURN k%
ENDIF
ENDWH

ENDP

[] ProC kget%:
LOCAL k%,h$(9),a$(5)

h$="nosciefgd” REM our shortcut keys
WHILE 1
k%=GET
IF k%=$122 REM Menu key
mINIT

MCARD “File”,"New”,%n,“Open”,%o0,“Save”,%s
mMCARD “Edit”,“Copy”,%c, “Insert”,-%i,“Eval’,%e

MCARD “Search” “First”,%f,“Next”,%g,“Previous”,%d

k%=MENU

IF k% AND (LOC(h$,CHR$(k%))<>0) REM MENU CHECK

CFRIENDLIER INTERACTION ‘

OPL

a$="proc”+CHR$(k%)

@(a%): REM procn:, proco;, ...
ENDIF REM END OF MENU CHECK
ELSEIF k% AND $200 REM shortcut key pressed directly?
k%=k%-$200 REM remove Psion key code
IF LOC(h$,CHR%$(k%)) REM DIRECT SHORTCUT KEY CHECK
a$="proc”+CHR$(k%)
@(a%): REM procn:, proco;, ...
ENDIF REM END OF DIRECT SHORTCUT KEY CHECK
ELSE REM some other key
RETURN k%
ENDIF
ENDWH

ENDP
procn: , proco: , etc would need to be specified to use this example in practice on any of the machines:
PROC procn:

ENDP
PROC proco:

ENDP

é Note that this procedure allows you to press a shortcut key with or without the Shift key. So Ctrl+Shift+N

would be treated the same as Ctrl+N, similarly on the Series 3c, Shift-Psion-N would be treated the same as
Psion-N.

Neither LOC nor the@operator (for calling procedures by strings) differentiate between upper and lower case. If
you have Shifted shortcut keys you will need to compare against two sets of shortcut key lists. For example, with
shortcut key®6A %C %aand%d you would have upper/lowercase shortcut key listsHike="AC” and

hi$="ad” , and the “MENU CHECK” section becomes:

IF k%<=%Z REM if upper case shortcut key
IF LOC(hu$,CHR$(k%))
a$="procu”+CHR$(k%)
@(a$%): REM procua:, procuc:, ...
ENDIF
ELSE REM else lower case shortcut key
IF LOC(hl$,CHR$(k%))
a$="procl"+CHR$ (k%)
@(a%): REM procla:, procld:, ...
ENDIF
ENDIF

(This calls procedurgzrocua: , procuc: ,procla: andprocld:). If a shortcut key was pressed directly
you cannot tell fronk%whether Shift was used; so make the same change to the “DIRECT SHORTCUT KEY
CHECK” section, but us#= KMOD AND 2 instead ofF k%<=%Z.

(FRIENDLIER INTERACTION [80)

OPL

In OPL, dialogs are constructed in a similar way to menus:

e Use the dINIT command to prepare OPL for a new dialog. If you give a string argument to dINIT it will be
displayed as a title for the dialog. On the Series 5, the title will be in a grey box at the top of the dialog and
on the Series 3c it will be separated from the rest of the dialog by a horizontal line.

« Define each line of the dialog, from top to bottom. There are separate commands for each type of item you
can use in a dialog for example, dEDIT for editing a string, dDATE for typing in a date, and so on.

e Use the DIALOG function to display the dialog. In general it returns a number indicating the line you were
on when you pressed Enter (counting any title line as line 1), or O if you pressed Esc.

Use the up and down arrow keys to move from line to line, and enter the relevant information, as in any other
Psion dialog. You can even press Tab to produce vertical lists of options when appropriate.

Each of the commands like dEDIT and dDATE specifies a variable to take the information you type in. If you
press Enter to complete the dialog, the information is saved in those variables. The dialog is then removed, and
the screen redrawn as it was.

You can press Esc to abandon the dialog without making any changes to the variables.

If you enter information which is not valid for the particular line of the dialog, you will be asked to enter
different information.

Here is a simple example. It assumes a global vanete$ exists:

PROC getname:
dINIT “Who are you?”
dEDIT name$,“Name:”
DIALOG

ENDP

This procedure displays a dialog wittho are you? as its top-line title, and an edit box for typing in your
name. If you end by pressing Enter, the name you have typed will be saxardes$; if you press Esmame$
is not changed.

When the dialog is first displayed, the existing contentsaofie$ are used as the string to edit.

Note that the dialog is automatically created with a width suitable for the item(s) you defined, and is centred in
the screen.

This section describes the various commands that can define a line of a dialog. In all cases:
« prompt$ is the string which will appear on the left side of the line.

e var denotes an argument whigtust be a LOCAL or GLOBAL variablehecause it takes the value you
enter. Single elements of arrays may also be used, but not field variables or procedure parameters. (var is
just to show you where you must use a suitable variable you don't actually type var.)

Where appropriate, this variable provides the initial value shown in the dialog.

Although examples are given using each group of commands, you can mix commands of any type to make up
your dialog.

More details of the commands may be found in the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’
document.

(FRIENDLIER INTERACTION [81)

OPL

STRINGS, SECRET STRINGS AND FILENAMES
dEDIT var str$,prompt$,len%

defines a string edit box.

len% is an optional argument. If supplied, it gives the width of the edit box (allowing for the widest possible
character in the font). The string will scroll inside the edit box, if necessden4 is not supplied, the edit box
is made wide enough for the maximum width$ could be. (You may wish to set a suitably srieiPb6 to

stop some dialogs being drawn all the way across the screen)

dXINPUT var str$,prompt$

defines a secret string edit box, such as for a password. A special symbol will be displayed for each character
you type, to preserve the secrecy of the string.

dFILE var str$,prompt$,f%

[] dFILE var str$,prompt$,f%,Uid1&,Uid2&, Uid3&

defines a filename editor or selector box. dFILE automatically has ‘Folder’ and ‘Disk’ selectors (only a ‘Disk’
selector on the Series 3c) on the lines belof¥itcontrols whether you have a file editor or selector in your
dialog, and the kind of input allowed. On the Series 5, files selected may also be restricted by UID. See dFILE
in the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for full details of how use dFILE.

Here is an example dialog using these commands:

PROC info:
LOCAL n$(30),pw$(16),f$(255)
dINIT “Your personal info”
dEDIT n$,“Name:”,15
dXINPUT pw$,“Password:”
dFILE f$,“Log file:",0
RETURN DIALOG

ENDP

On the Series 5, you may want to replace the dFILE line with the following:
dFILE f$,“Log file,Folder,Disk”,0

as default prompts for the folder and disk selector boxes are not provided as on the Series 3c.

This procedure returns ‘True’ if Enter was used, indicating that the GLOBAL variablgsv$ andf$ have
been updated.

[] dEDITMULTI var ptrData&,prompt$,widthInChars%,noOfLines%,maxLen%

defines a multi-line edit box to go into a dialog. Normally the resulting text would be used in a subsequent
dialog, saved to file or printed using the Printer OPX (see the ‘OPX.pdf’ document). The use of this dialog
command is more complicated than the others (see the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’
document for full details).

CFRIENDLIER INTERACTION ‘

OPL

dCHOICE var choice%,prompt$,list$

defines a choice lislist$ should contain the possible choices, separated by commas for example,
“Yes,No” . Thechoice% variable specifies which choice should initially be shown 1 for the first choice, 2 for
the second, and so on.

For example, here is a simple choice dialog:

PROC dcheck:

LOCAL c%

c%=2 REM default to “View2”

dINIT “Change View”

dCHOICE c¢c%,"“View:","Viewl,View2,View3"

IF DIALOG REM returns 0 if cancelled
REM change view

ENDIF
ENDP

[] On the Series 5, extended choice lists may also be defined by using more than one dCHOICE statement
(see the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for full details of how to do this).

[] dCHECKBOX chk%,prompt$

creates a checkbox entry. This is similar to a choice list with two items, except that the list is replaced by a
checkbox with the tick either on or off. The state of the checkbox is maintained across calls to the dialog.
Initially you should set the live variab&ink% to 0 to set the tick symbol off and to any other value to set it
on.chk% is then automatically set to O if the box is unchecked or -1 if it is checked when the dialog is
closed.

dLONG var long&,prompt$,min&,max&
and
dFLOAT var fp,prompt$,min,max

define edit boxes for long integers and floating-point numbers respectively. Use dFLOAT to allow fractions, and
dLONG to disallow themmin(&) andmax(&) give the minimum and maximum values which are to be
allowed. There is no separate command for ordinary integers use dLONG with suitaflandmax& values.

dDATE var long&,prompt$,min&,max&
and
dTIME var long&,prompt$,type%, min&,max&

define edit boxes for dates and timesn& andmax& give the minimum and maximum values which are to be
allowed.

For dDATE,long& , min& andmax& are specified in “days since 1/1/1900”. The DAY'S function is useful for
converting to “days since 1/1/1900".

(FRIENDLIER INTERACTION [88)

OPL

For dTIME,long& , min& andmax&are in “seconds since 00:00”. The DATETOSECS and SECSTODATE
functions are useful for converting to and from “seconds since midnight” (they actually use “seconds since 00:00
on 1/1/1970").

dTIME also has &pe% argument. This specifies the type of display required:
type% time display

0 absolute time without seconds
1 absolute time with seconds

2 duration without seconds

3 duration with seconds

[] Two additional types are also available on the Series 5.
4 absolute times in 24 hour clock
8

time not displaying hours
For example3:45 is anabsolute timgwhile 3 hours 45 minutes isdairation
This procedure creates a dialog, using these commands:

PROC delivery:
LOCAL dé&,t&,numé&,wt
d&=DAYS(DAY,MONTH,YEAR)
DO
t&=secsé&:
UNTIL t&=secs&:
num&=1 :wt=10
dINIT “Delivery”
dLONG numé&,“Boxes”,1,1000
dFLOAT wt,“Weight (kg)”,0,20000
dDATE d&,"Date”,d&,DAYS(31,12,1999)
dTIME t&,“Time”,0,0,DATETOSECS(1970,1,1,23,59,59)
IF DIALOG REM returns 0 if cancelled
REM rest of code
ENDIF
ENDP

PROC secsé&:
RETURN HOUR*INT(3600)+MINUTE*60
ENDP

Thesecs&: procedure uses the HOUR and MINUTE functions, which return the time as kept by the Psion. It
is called twice to guard against an incorrect result, in the (albeit rare) case where the time ticks past the hour
between calling HOUR and calling MINUTE.

The INT function is used isecs&: to force OPL to use long integer arithmetic, avoiding the danger of an
‘Overflow’ error.

d& andt& are set up to give the current date and time when the dialog is first displayed. The d&ligaiso
used as the minimum value for dDATE, so that in this example you cannot set a date before the current date.

DATETOSECS is used to give the number of seconds representing the time 23:59. The first three arguments,
1970, 1 andl, represent the first day from which DATETOSECS begins calculating.

(FRIENDLIER INTERACTION [84)

OPL

RESULTS FROM DDATE
dDATE returns a value as a number of days. To convert this to a date:

[] use DAYSTODATE which converts a number of days since 1/1/1990, to the corresponding date. See the
‘Alphabetic Listing’ for full details.

[]

If you are dealing only with days on or after 1/1/1970, you can subtract 25567 (DAYS(1,1,1970)),
multiply by 86400 (the number of seconds in a day), and use SECSTODATE.

To handle days before 1/1/1970 as well, you can call the Operating System to perform the conversion.
This procedure is passed one parameter, the number of days, and from it sets four global variables
day%, month%, year% and yrdy%. It calls the Operating System with the OS function:

PROC daytodat:(days&)

LOCAL dyscent&(2),dateent%(4)
LOCAL flags%,ax%,bx%,cx%,dx%,si%,di%
dyscent&(1)=days&
si%=ADDR(dyscent&()) :di%=ADDR(dateent%())
ax%=$0600 REM TimDaySecondsToDate fn.
flags%=0S($89,ADDR(ax%)) REM TimManager int.
IF flags% AND 1
RAISE (ax% OR $ff00)
ELSE
year%=PEEKB(di%)+1900
month%=PEEKB(UADD(di%,1))+1
day%=PEEKB(UADD(di%,2))+1
yrdy%=PEEKW(UADD(di%,6))+1
ENDIF

ENDP

If you do use this procedure, be careful to type it exactly as shown here.

Displaying text
dTEXT prompt$,body$,type%

definesprompt$ to be displayed on the left side of the line, Body$ on the rightThere is no variable
associated with dTEXT.If you use a null string{) for prompt$, body$ is displayed across the whole

width of the dialog.
type% is an optional argument. If specified, it controls the alignmehod¥$:
type% effect
0 left alignbody$
1 right alignbody$
2 centrebody$

CFRIENDLIER INTERACTION ‘

OPL

[] Note that alignment dody$ is only supported wheprompt$ is null, with the body being left aligned
otherwise.

In addition, you can add any or all of the following three valuégpe% , for these effects:

$200 draw a line below this item.
$400 make the prompt (not the body) selectable.
$800 make this item a text separator

dTEXT is not just for displaying information. Since DIALOG returns a number indicating the line you
were on when you pressed Enter (or O if you pressed Esc), you can use dTEXT to offer a choice of options,
rather like a menu:

PROC select:
dINIT “Select action”
dTEXT “Add”,*”,$402
dTEXT “Copy”,*”,$402
dTEXT “Review”,"*”,$402
dTEXT “Delete”,*”,$402
RETURN DIALOG

ENDP

In each casgype% is$402 ($400+2). Theb400 makes each prompt selectable, allowing you to move

the cursor on to it. Note thahly the prompts are selectable: if you try the example given for the Series 3c
below on the Series 5, you will see that the itemsiatselectable because the prompt is null. However,

the items will be centre aligned in the dialog.

[n addition, you can add any or all of the following three valuggpe% , for these effects:

$100 use bold text for body$.
$200 draw a line below this item.
$400 make this line selectable. It will also be bulleted if prompt$ is not “".

dTEXT is not just for displaying information. Since DIALOG returns a number indicating the line you
were on when you pressed Enter (or O if you pressed Esc), you can use dTEXT to offer a choice of options,
rather like a menu:

PROC select:
dINIT “Select action”
dTEXT “,"Add",$402
dTEXT “","Copy”,$402
dTEXT “","Review”,$402
dTEXT “","Delete”,$402
RETURN DIALOG

ENDP

In each casg/pe% is $402 ($400+2). Theb400 makes each text string selectable, allowing you to move
the cursor on to it, whil2 makes each string centred.

See the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for full details of dTEXT.

(FRIENDLIER INTERACTION [86)

OPL

DISPLAYING EXIT KEYS

Most dialogs are completed by pressing Enter to confirm the information typed, or Esc to cancel the dialog.
These keys are not usually displayed as part of the dialog.

However, some Psion dialogs offer you a simple choice, by showing pictures of the keys you can press. A
simple “Are you sure?” dialog might, for example, show the two keys ‘Y’ and ‘N’, and indicate the one you
press.

If you want to display a message and offer Enter, Esc and/or Space as the exit keys, you can display the entire
dialog with the ALERT function.

If you want to use other keys, such¥YaandN, or display the keys below other dialog items such as dEDIT,
create the dialog as normal and use the dBUTTONS command to define the keys.

ALERT and dBUTTONS are explained in detail in the ‘Alphabetic listing’ section of the ‘Glossary.pdf’
document.

OTHER DIALOG INFORMATION

POSITIONING DIALOGS

If a dialog overwrites important information on the screen, you can position it with the dPOSITION command.
Use dPOSITION at any time between dINIT and DIALOG.

dPOSITION uses two integer values. The first specifies the horizontal position, and the second, the vertical.
dPOSITION -1,-1 positions to the top left of the scre@®OSITION 1,1 to the bottom right;
dPOSITION 0,0 to the centre, the usual position for dialogs.

dPOSITION 1,0 , for example, positions to the right-hand edge of the screen, and centres the dialog half way
up the screen.

[] OTHER DIALOG FEATURES

On the Series 5, dINIT can take a second optional parameter to specify additional dialog features. This may be any
ORed combination of the following constants:

value effect

1 buttons positioned on the right rather than at the bottom
2 no title bar (any title in dINIT is ignored)

4 use the full screen

8 don’t allow the dialog box to be dragged

16 pack the dialog densely (not buttons though)

Constants for these flags are supplied in Const.oph. See the ‘Calling Procedures’ section of the ‘Basics.pdf’
document for details of how to use this file and Appendix E in the ‘Appends.pdf document for a listing of it.

It should be noted that dialogs without titles cannot be dragged regardless of the “No drag” setting. Dense
packing enables more lines to fit on the screen for larger dialogs.

For example, the following could be used for a large dialog:
dINIT “Series 5 Dialog”,$15

so that the dialog covers the full screen, has buttons (as defined by dBUTTONS) on the right and has items
densely packed.

CFRIENDLIER INTERACTION ‘

OPL

RESTRICTIONS ON DIALOGS
The following general restrictions apply to all dialogs:

¢ Only one dialog may be in use at a time.

e Adialog must be initialised (dINIT), defined (dEDIT etc.) and displayed (DIALOG) in the same procedure.

e No erroris raised if the dialog is too wide or too long to fit on the screen: it is up to the programmer to

ensure the dialog is displayed in a suitable way.

e Adialog may consist of up to nine lines, including any title. Filename editors count as two lines, and
exit keys count as three. A ‘Too many items’ error is raised if this limit is exceeded.

e If the width of any line would make the dialog too wide, a ‘Too wide’ error is raised when DIALOG is

called.

SERIES 5 TOOLBAR USAGE

The toolbar on the Series 5 replaces the Series 3a, 3c and Siena status window. All Series 5 OPL programs
should use the ROM modufe\System\Opl\Toolbar.opo to create a toolbar window with a title, four

buttons and a clock.

The public interface tdoolbar.opo is supplied inZ:\System\Opl\Toolbar.oph
below. The procedures and their usage are then discussed in detail.

TOOLBAR.OPH

REM Toolbar.oph version $100
REM Header file for OPL'’s toolbar
REM (c)Copyright Psion PLC 1997

REM Public procedures

EXTERNAL TBarLink:(appLink$)

EXTERNAL TBarlnit:(title$,scrwW%,scrH%)

EXTERNAL TBarSetTitle:(name$)

EXTERNAL TBarButt:(shortcut$,pos%,text$,state%,bit& mask&,flags%o)
EXTERNAL TBarOffer%:(winld&,ptrType&,ptrX&,ptrY &)

EXTERNAL TBarLatch:(comp%)

EXTERNAL TBarShow:

EXTERNAL TBarHide:

REM The following are global toolbar variables usable by OPL programs
REM or libraries. Usable after toolbar initialisation:

REM TbWidth% the pixel width of the toolbar

REM TbVis% -1 if visible and otherwise 0

REM TbMenuSym% current Show toolbar menu symbol (ORed with shortcut)

REM Flags for toolbar buttons
CONST KTbFIgCmdOnPtrDown%=$01

which is reproduced

CFRIENDLIER INTERACTION ‘

OPL

CONST KTbFlIgLatchStart%=$12 REM start of latchable set

CONST KTbFIgLatchMiddle%=$22 REM middle of latchable set

CONST KTbFIgLatchEnd%=$32 REM end of latchable set

CONST KTbFIgLatched%=$04 REM set for current latched item in set

REM End of Toolbar.oph

Typically a program would use Toolbar.opo in the following way:

* LOADM “Z:\System\Opl\Toolbar.opo” to load the toolbar module. This module must remain loaded as
long as you need to use the toolbar.

e ‘Link’ the toolbar-specific globals into the top-level of your program, using TBarLink:

* Initialise the toolbar, creating an invisible toolbar window with title and clock, using TBarlnit:
e Add normal or latchable toolbar buttons to the toolbar, using TBarBultt:

e Make the toolbar visible, using TBarShow:

« Offer all pointer events to the toolbar so that it can call your commands, change the system clock type or
display the task list, using TBarOffer%:

e Latch a button down to represent the current view when the view changes, using TBarLatch:
e Change the toolbar title to the current document name, using TBarSetTitle:
¢ Show and hide the toolbar as appropriate, using TBarShow: and TBarHide:

e Providecommand-handlingrocedures to be called Bypolbar.opo when a toolbar button is pressed.

UsageTBarLink:(appLink$)

TBarLink: provides all toolbar globals required in your application. It has to be called before TBarlnit: and from
a higher level procedure in your application than the one in which the globals are used.

appLink$ is the name of the so-calledntinuation proceduré your main application. TBarLink: calls this
procedure, which should then go on to run the rest of your program. This allows the globals declared in
TBarLink: to exist until the application exitappLink$ must represent a procedure with name and parameters
like:

PROC appContTBarLink:
REM Continue after ‘linking’ toolbar globals
myApplnit: REM run rest of program

ENDP

i.e. taking no parameters and with no return-type specification character, so that it can be called using
@(appLink$):.

(FRIENDLIER INTERACTION [89)

OPL

Usage:TBarlnit:(title$,scrW%,scrH%)

Called at start of application only, this procedure creates the toolbar window, which guarantees that there will be
sufficient memory available to display the toolbar at any subsequent time. The toolbar is made invisible when
not shown. This procedure also draws all toolbar components except the buttons.

Note that, for speed, TBarlnit: turns graphics auto-updating off (using gUPDATE OFF). If automatic updating is
required, use gUPDATE ON after TBarlnit: returns.

Note also that TBarlnit: sets compute mode off (see SETCOMPUTEMODE: in the ‘System OPX’ section of the
‘OPX.pdf' document) allowing the program to run at foreground priority when in foreground. By default OPL
programs have compute mode on (i.e. they run at background priority even when in foreground).

title$ s the title shown in the toolbar. You should change this to the name of your current file, using
TBarSetTitle:.

scrW%is the full-screen width (QWIDTH at startup).
scrH% is the full-screen height (QHEIGHT at startup).

UsageTBarSetTitle:(name$)
Sets the title in the toolbar.

name$ is the name of your current file for file-based applications (i.e. applications wigPfre.ENDA
construct containingfLAGS 1), or the name of your application for non-file applications.

Usage:TBarButt:(shortcut$,pos%,text$,state%o,bit&, mask&,flags%)
Adds a button to the previously initialised toolbar.

shortcut$ is the command shortcut for your application, which is usetidmjbar.opo to perform the
command when a toolbar button is selected. On selecting the toolbar Botithar.opo calls your
procedure to perform the required command or acsbortcut$ is case sensitive in the sense that
Toolbar.opo calls your procedure named:

e “cmd’+shortcut$+%: for unshifted, lower-case shortcuts,

e ‘“cmdS"+shortcut$+%: for shifted, upper-case shortcuts.
For example, if you have the following two commands that also have associated toolbar buttons:
MCARD “View”,“DoXXX",%x,“DoYYY",%Y REM shortcuts Ctrl+X,Shift+Ctrl+Y

you would need to provide command-handling procedures:

e PROC cmdX%:
REM handle shortcut Ctrl+X (lower case shortcut$="x")

e PROC cmdSY%:
REM handle shortcut Shift+Ctrl+Y (upper case shortcut$="Y")

(FRIENDLIER INTERACTION [40)

OPL

You would create buttons using, e.g.

e TBarButt:(“x",1,"DoXXX”",0,Xlcon&,XMask&,0)
REM Button for calling cmdX:

e TBarButt:(“Y”,1,"DoYYY",0,YIcon&,YMask&,0)
REM Button for calling cmdSY:

pos% is the button position, withos%=1 for the top button.

text$ andstate% take values as required for gBUTTON.

bit& andmask& are the button’s icon bitmap and mask, used in in the same way as for gBUTTON. Note that a
button is a purely graphical entity and so doesn’t own the bitmaps. Therefore the bitmaps may not be unloaded
while the button is still in use.

flags%
1.

lets you control how the button is used in two distinct and mutually exclusive ways, as follows:

Twolatchablebuttons are often used by the built-in applications to indicate the current view. For an
example, see the latchable ‘Desk’ and ‘Sci’ buttons in the built-in Calc application.

A set of latchable toolbar buttons can be specified in TBarButt: by setting flags% to one of:
KTbFIgLatchStart% for the first button in the latchable set.

KTbFIgLatchMiddle% for any middle buttons (these are optional and not generally used).
KTbFIgLatchEnd% for the last button in the latchable set.

To latch a button down initially to represent the initial setting, OR KTbFlgLatched% with one of the
above settings. E.g.

TBarButt:(sh1$,p0s%,txt1$,st%,bit1& msk1&,KTbhFIgLatchStart%)
TBarButt:(sh2$,p0s%,txt2$,st%,bit2&, msk2&,KTbFIgLatchEnd% OR TbFlgLatched%)

will latch down the second button in the set initially.

In the toolbar window, the button with KTbFIgLatchStart% set must be above the buttons (if any) with
KTbFIgLatchMiddle% set, and these in turn must be above the button with KTbFIgLatchEnd%.

Only one button in a set is ever latched and pressing another button unlatches the one that was previ-
ously set. After pressing and releasing a previously unlatched button in a latchable set, Toolbar.opo
will, as usual, call your command-handling procedure. When the command has succeeded in changing
view, this procedure should set the new state of the button by calling TBarLatch:(comp%) where
comp% is the button number to be latched. This will also unlatch any button that was previously
latched. The example below shows how a ‘Viewl’ button press, with ‘v’ as shortcut, should be han-
dled. The other latchable button in this set might be ‘View2' with shortcut ‘w’:

PROC cmdV%:
IF SetView1%:=0 REM if no error
TBarLatch:(KViewlTbharButton%) REM your CONST KViewl1TBarButton%
CurrentView%=1
ENDIF
ENDP

PROC cmdWbd%:
IF SetView2%:=0 REM if no error
TBarLatch:(KView2TbharButton%) REM your CONST KView2TBarButton%
CurrentView%=2
ENDIF
ENDP

You should call the same command-procedures when the command is performed via a menu or via a
keyboard shortcut. This will ensure that the button is latched as required.

(FRIENDLIER INTERACTION [41)

OPL

2. A setting of flags% can also be used to specify that your procedure should be called when the toolbar
button is tapped (rather than when the button is released, which is the default). The ‘Go to’ button in
the Program editor works in this way, displaying the popup list of procedures when the button is
touched. To implement this using TBarButt:, pass flags%=KTbFIlgCmdOnPtrDown% and provide a
procedure named: “cmdTbDown"+shortcut$+%:
which could provide a popup menu, as follows:

PROC cmdTbDownC%:
REM popup next to button, with point specifying
REM top right corner of popup
IF mPOPUP(Scrwid%-TbWidth%, 97, KMPopupPosTopRight%, “Cancel”,
0,"Clear”,%c)
cmdC%: REM Do the command itself
ENDIF
ENDP

In this case the shortcut is not case-sensitive. Note that when this flag is used, the menu command-
procedure is not used directly because a popup is not required when the command is invoked via the
menu or via a keyboard shortcut.

UsageTBarOffer%:(winld&,ptrType&,ptrX&,ptrY &)

Offers a pointer event to the toolbar, returning -1 if used and 0 if not used. If not used, the event is available for
use by your application.

It is important to call this procedure whenever you receive a pointer event, even when the event is not in the
toolbar window, thus enablinboolbar.opo to release the current button, both visually and otherwise.

TBarOffer%: handles:

« the tapping of the clock to change the type between analog and digital system-wide.
« the tapping of the toolbar title to display the list of open files.

» the selection of toolbar buttons, calling your command procedures.

e drawing of the button in the appropriate state.

As usual, the word ‘pointer’ indicates a pen on the Series 5.

winld& is the ID of the window that received the pointer event.

ptrType& is pointer event type as returned by GETEVENT32 (pen up, pen down or drag).

ptrX&,ptrY& is co-ordinate of pointer event.

Usage:TBarLatch:(button%)

Latches down a toolbar button, whéxgton%=1 for the top button in the toolbar. TBarLatch: also unlatches
any button in the latchable set that was previously latched. See TBarButt: for further details on latching buttons.

(FRIENDLIER INTERACTION [42)

OPL

TBARSHOW:
Usage:TBarShow:

Makes the toolbar visible. The toolbar must exist before calling this procedure. Use TBarlnit: to create an
invisible toolbar with no buttons. Use TBarButt: to add buttons.

TBARHIDE:
Usage:TBarHide:

Makes the toolbar invisible.

PUBLIC TOOLBAR GLOBALS
The following toolbar globals, provided by TBarLink:, may be used in Series 5 OPL applications:

e TbWidth% is the pixel width of the toolbar. The rest of the screen width is available for the application.
e ThVis% is -1 if visible and otherwise 0

e TbMenuSym% is the current ‘Show toolbar’ menu symbol to be added to menu shortcut for View|Show
toolbar, e.g.
mCard “View”,”Show toolbar”,%t or TbMenuSym%
TbMenuSym%=(KMenuCheckBox% OR KMenuSymbolOn%)if the Toolbar is visible and
TbMenuSym%=KMenuCheckBox% invisible. The menu item will therefore be a checkbox item, with
the check present or not as appropriate.

GIVING INFORMATION

[] STATUS WINDOW TEMPORARY AND PERMANENT

Pressing Psion-Menu when an OPL program is running will always display a temporary status window. This
status window is in front of all the OPL windows, so your program can’t write over it.

UseSTATUSWIN ONor STATUSWIN ON,type% to display a permanent status window. It will be displayed
until you useSTATUSWIN OFFE type% specifies the status window type.

[] The small status window is displayed fppe%=1 and the large status window either wigoe% is not
supplied or wheitype%=2 .

SienaThere is only one type of status window which will be displayed whatgpe® you use.
You might useSTATUSWIN ONwhen Control-Menu is pressed, for consistency with the rest of the Series 3c.

The status window is displayed on the right-hand side of the screen.

[] THE RANK OF THE STATUS WINDOW

Important: The permanent status windowbishind all other OPL windows. In order to see it, youst use
either FONT or both SCREEN and gSETWIN, to reduce the size of the text window and the default graphics
window. You should ensure that your program does not create windows over the top of it.

FONT automatically resizes these windows to the maximum size excluding any status window. It should be
called after creating the status window because the new size of the text and graphics windows depends on the

CFRIENDLIER INTERACTION ‘

OPL

size of the status window. Note tHONT -$3fff,0 leaves the current font and style - it just changes the
window sizes and clears them.

If you use SCREEN and gSETWIN instead of FONT, you should use the STATWININFO keyword (described
next) to find out the size of the status window.

curtype%=STATWININFO(type%,extent%!()) sets the four element arraytent%() as follows:
extent%(1) = pixels from left of screen to status window

extent%(2) = pixels from top of screen to status window

extent%(3) = status window width in pixels

extent%(4) = status window height in pixels for status windiyywe% .

type%=3 specifies the compatibility mode status window gmu%=-1 specifies whichever type of status
window is currently shown. Otherwise, use the same valugpe¥ as for STATUSWIN.

STATWININFO returns the type of theurrent status window. The values are astfqre% , or zero if there is
no current status window.

@ If type%=-1 for the current status window and there is none, STATWININFO returns consistent information
in extent%() corresponding to a status window of width zero and full screen height positioned one pixel to
the right of the physical screen.

So to set a graphics window to have helgftand to use the full screen width up to the current status window
(if any), but leaving a one pixel gap between the graphics window and the status window, you could use:

STATWININFO(-1,extent%()) :gSETWIN 0,0,extent%(1),h%

Alternatively you could simply useONT -$3fff,0 as described under STATUSWIN above, which also sets
the height to full screen height and sets the text window size to fit inside it.

The status window always displays the OPL program name, a clock and, by default, an icon. This will be the
default OPL icon, unless your program is@RAwith its own icon. QPAs are described in the ‘Advanced.pdf’
document.) In addition, the settings selected in the ‘Status window’ menu option of the System screen are
automatically used in OPL status windows. The status window will, therefore, also display all the indicators
required, and a digital or analog clock as selected there.

The status window is inaccessible to, and does not affect, the OPL keywords gORDER and gRANK.

You can set or change the name displayed in the status window with SETNAME for exXaBETNAME
“ABCD” or SETNAME a%

Your program may have several distinct modes/views/screens between which you would like the diamond key
to switch. The built-in applications use the diamond key extensively Agenda uses it to switch to the different
views, while Word switches between ‘Normal’ and ‘Outline’ view.

The diamond list is displayed in the status window. It is a list of modes, views or screens which are stepped
through as the diamond key is pressed.

(FRIENDLIER INTERACTION [44)

OPL

OPL programs can set up a diamond list. Use
DIAMINIT pos%,strl$,str2$,...

to initialise the list (this discards any existing list). The list can be initialised before or after a status window is
displayed.

strl$,str2$ etc. contain the text to be displayed in the status window for each item in the list.

pos% is the initial item on to which the diamond indicator should be positionedpas#h=1 specifying the
first item. (Any value greater than the number of strings specifies the final item.)

If pos%=0, or if DIAMINIT is used on its own with no arguments, no bar is defined.
If pos%=-1 the list is replaced by the icon instead in the large status window.

If pos%>=1you must supply at least this many strings

Defining a list uses some memory, so ‘No system memory’ errors are possible.

DIAMPOS pos%positions the diamond indicator in a list. You might move the indicator to the next item when
the diamond key is pressed and to the previous item when Shift+the diamond key is pressed. The diamond key
has keycode value 292 and KMOD returns 2 when the Shift key is pressed.

Positioning outside the range of the items wraps around in the appropriate way if there are three items in the list,
DIAMPOS 4 positions to the first.

DIAMPOS 0 causes the diamond symbol to disappear.

@ Use chr$(4) to display a diamond key in a menu. If you use it as a shortcut key, a Shift will be added
automatically.

GIPRINT displays an information message for 2 seconds, in the bottom right corner of the screen. For example,
GIPRINT “Not Found” displaysNot Found . If a string is too long for the screen, it will be clipped.

You can add an integer argument to control the corner in which the message appears:

value corner

0 top left

1 bottom left
2 top right

3 bottom right

[] constants for these corner values are supplied in Const.oph. See the ‘Calling Procedures’ section of the

‘Basics.pdf’ document for details of how to use this file and Appendix E in the ‘Appends.pdf document
for a listing of it.

For exampleGIPRINT “Who?”,0 printsWho?in the top left corner.

Only one message can be shown at a time. You can make the message go away for example, if a key has been
pressed witlGIPRINT *”

(FRIENDLIER INTERACTION [45)

OPL

‘BUSY’ MESSAGES

Messages which say a program is temporarily busy, or cannot respond for some reason, are by convention
shown in the bottom left corner. The BUSY command lets you display your own messages of this sort. Use
BUSY OFFto remove it.

BUSY “Paused...” , for example, displayBaused... in the bottom left corner. This remains shown until
BUSY OFFis used.

You can control the corner used in the same way as for GIPRINT.

You can also add a third argument, to specify a delay time (in half seconds) before the message should be
shown. Use this to prevent BUSY messages from continually appearing very briefly on the screen.

For exampleBUSY “Wait:",1,4 will display Wait: in the bottom left corner after a delay of 2 seconds.
As soon as your program becomes responsive to the keyboard, it shoBIdSMEFF If this occurs within
two seconds of the original BUSY, no message is seen.

The maximum string length of a BUSY message is 80 characters (on the Series 3c, 19 characters) and an
‘Invalid argument’ error is returned for any value in excess of this.

Only one message can be shown at a time.

CFRIENDLIER INTERACTION ‘

OPL

INDEX

SYMBOLS
@ symbol 30

A

ALERT 37
AT 24

B

baseline of text 12
bitmaps

colour mode 22

files 22

in memory 22
borders

in windows 11
BUSY 46
‘Busy’ messages 46

C

clearing pixels 9, 15
clearing the screen 7
clock 23

co-ordinates 5

colour modes 7, 18, 22
Control key 25

current position 5
current window 17
CURSOR 12, 20, 24
cursor

in graphics window 12, 20

user-defined 24

D

date input 33
DATETOSECS 34
DAYSTODATE 35
dBUTTONS 37
dCHECKBOX 33
dCHOICE 33
dDATE 33, 35
dEDIT 32
dEDITMULTI 32
default window 17
DEFAULTWIN 7, 8, 18
dFILE 32

dFLOAT 33
DIALOG 31
dialogs 31
abandoning 31
choice lists 33
date and time input 33
exit keys 37
number input 33
restrictions 38
string display 35
string input 32
diamond
list 44
DIAMPOS 45
dINIT 31, 37
dithering 7
dLONG 33
dots
drawing 5, 6
dPOSITION 37
drawables 22
dTEXT 35
dTIME 33
dXINPUT 32

F

FONT 24, 43
fonts 12

UlDs 13

user-defined 24
G
gAT 6
gBORDER 11, 19
gBOX 9
gBUTTON 11, 23
gCIRCLE 11
gCLOCK 23
gCLOSE 20
gCLS 7
gCOLOR 7, 17
gCOPY 11, 21
gCREATE 17, 18, 19
gCREATEBIT 22
gDRAWOBJECT 11
gELLIPSE 11
‘General failure’ 8
gFONT 12, 18
gGMODE 10, 18
gGREY 8, 18, 21

OPL

gHEIGHT 21
gIDENTITY 21
gINFO 21
gINFO32 21
gINVERT 11
GIPRINT 45
gLINEBY 5
gLINETO 6
gLOADBIT 22
gLOADFONT 24
gMOVE 5
gORDER 20
gORIGINX 21
gORIGINY 21
gPATT 10, 21
gPEEKLINE 21
gPOLY 11, 23
gPRINT 11, 15
gPRINTB 17
gPRINTCLIP 17
gRANK 21

grey 7, 8, 18
gSAVEBIT 21, 22
gSCROLL 11, 21
gSETPENWIDTH 11
gSETWIN 21, 25
gSTYLE 18
gTMODE 15, 18
gTWIDTH 17
gUNLOADFONT 24
gUPDATE 23
gUSE 18, 20, 22
gVISIBLE 20
gWIDTH 21

gX 21
gXBORDER 11, 19
gXPRINT 17

gy 21

HOUR 34

ICON 23
IDs
for bitmaps 22
for font 24
for font files 24
for windows 17, 18

information messages 45

INT 34
‘Invalid argument’ 28, 46
inverting pixels 9, 15

LOC 30

masks 23
mCARD 25, 28
mCASC 27
MENU 25, 27, 28
menu items
dimmed 26
with checkboxes 26
with option buttons 26
without shortcuts 26
menus 25
cascaded 26
defining 25
displaying 27
grouping options together 25
popup 26, 27
problems 28
mINIT 25
MINUTE 34
mono-spaced text 12
mPOPUP 27

‘No system memory’ 8, 28, 45
number input 33

ONERR 28
Overwriting

in graphics 9
overwriting

in graphics 15

pixels 5
POINTERFILTER 23
PRINT 24
proportional font 12

in text window 24
Psion key 25

(voex D)

OPL

S U
SCREEN 21, 24, 25 UIDs
screen positions 5 font 13
screen size 5

SCREENINFO 25 4%

SECSTODATE 34

SETCOMPUTEMODE 40 windows 17

SETNAME 44 :l‘(’)gﬁrs 2109
shortcut keys 25, 28 9
colour modes 18
speed 23 .
. current window 17
status window 43 .
. default window 17
position 44 .
hiding 20

rank 43 . .

. information about 21
size 44 overlapping 20
type 43 text ZEp ’
visibility 43

STATUSWIN 43
STATWININFO 44
strings

input 32
STYLE 25

T

TBarButt 40
TBarHide 43
TBarlnit 40
TBarLatch 42
TBarLink 39
TBarOffer% 42
TBarSetTitle 40
TBarShow 43
text input 32
time
current 34
input 33
‘Too many items’ 38
‘Too wide’ 28, 38
Toolbar.oph 38
Toolbar.opo 39
toolbars 38
buttons 40
displaying 43
globals 43
hiding 43
initialising 40
latching buttons 42
linking globals 39
offering a pointer event to 42
titte 40

OPL

OPL & DISKS

[0 Copyright Psion Computers PLC 1997
This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS

USING DISKS IN OPL
[] TYPES OF SOLID STATE DISK

[] HOW TO PUT PROGRAMS ON AN SSD

[] ssbs FROM INSIDE OPL
DIRECTORIES AND DOS STRUCTURE

(opL e Disks D)
2

OPL

USING DISKS IN OPL

[] onthe Series Snemory diskin theD: drive may be used in the same way as the internal memory by
specifyingD: where you would usually specify. .

[] onthe Series 3c, Solid State Disk&sS$, which are explained in detail in the User guide, may be used.

SienaOn the Siena, there is no support for using disks.

There are two main reasons for using disks:
e To provide more room for storing data.

* To make backup copies of important information, in case you accidentally change or delete it (or even lose
your Psion).

The discussion below explains the use of SSDs for OPL on the Series 3c.

[] TYPES OF SOLID STATE DISK

There are two typesRam SSDandFlash SSDsThey fit into the SSD drives markédandB, at either side of
the Series 3c.

* Flash SSDs are for storing or backing up information which is infrequently changed. This includes finished
OPL programs.

« Ram SSDs are for storing or backing up information which changes frequently. This includes OPL pro-
grams you are still writing or testing.

You can, though, save programs and data files to either kind of SSD, as you see fit.

[] HOW TO PUT PROGRAMS ON AN SSD

To create a new OPL module on an SSD, use the ‘New file’ option in the System screen as before, but set the
Disk line of the dialog t@\ or B as required.

To copy an OPL module on to an SSD, move onto the module name where it is listed under the Program icon,
and use the ‘Copy file’ option on the ‘File’ menu. Set the ‘To file: Disk’ linédtr B. If you want this copy to

have a different name to the original, type the name to use, on the ‘To file: Name’ line. The new copy will
appear in the list under the Program icon, but yAjh or [B] after its name.

To copy theranslated version of an OPL module, move onto the name in the list under the RunOpl icon (to the
right of the Program icon), then proceed as before.

[] SSDS FROM INSIDE OPL

Your OPL programs can create or use data files on SSDs. To do so, begin the name of the datA filerwith
B: - for example:

CREATE “B:JKQ",A,X1$,X2%

tries to create a data fillKQ on an SSD i, while
DELETE “A:X300”

tries to delete a data fi300 on an SSD iA.

(oPL & DIsKs -
Z

OPL

Don’t confuse the drive namésandB with the logical name#, B, C andD. Logical names are unaffected by
which drive a data file is on.

The internal memory can be referred tdvas if required. For example:

PROC delx300:
LOCAL a$(3),c%
a$="MAB” :c%=1 REM default to “Internal”
dINIT “Delete X300 data file”
dCHOICE ¢%,"Disk:”,”Internal,A,B”

IF DIALOG REM returns 0 if cancelled
DELETE MID$(A$,c%,1)+":X300"
ENDIF
ENDP

In this exampleMID$(A$,c%,1) gives‘M” ,“A” or“B” , according to the choice made in the dialog. This is
added on the front 6fX300” to give the name of the file to delet&:X300” , “A:X300” or“B:X300"

When using data files with SSDs, follow the same guidelines as with OPL programs - Flash SSDs are for one-off
or “finished” information, while Ram SSDs are for information which is still being changed.

DIRECTORIES AND DOS STRUCTURE

The internal memory, memory disks and SSDs use a DOS-compatible directory structure, the same as that used
by disks on PCs. For more details, see the ‘Advanced.pdf document.

(oPL & DIsKs -
Z

OPL

EXAMPLE PROGRAMS

[0 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS

WHEN YOU'RE TY PIN G IN ittt ettt anenn 1
ERRORS oo e oo e oo e e e e e e e s e e s oo s e e s e e s e s e e s e s e e s e ee s e s e eas e e e s e e s e e ene o, 1
COUNTDOWN TIMER oo e e e e e s e s e s s eeeeeees s e e e ses s seseeeeseseseseeeesenes 1
DICE e et e e e e e e e e e et e e e e e e er e, 3
RANDOM NUMBERS ..o s e e e e e e e e e s s e e ee e e s s e s e e e s s s s s e s s s eeseeens 3
BIRTHIDAYS .ot e e s e e e e e e s e e e e e e e e e e e e e s s e e e e e s s s e e eee s es e es e s s s seeeeneeee 3
DATA FILES .ot e e e e e e e e e e e e e e s s e e e e s s e e e e e s e e s e e s s s e e e e esesee e eseeeseeen. 4
RE-ORDER ... e e e e e e e e e e e e e e e s s s e e s s e e e e e s e s e s s e s e s e s e eeses e s seseseeseseeen 6
STOPWATCH e e e ee e e e e e e e e e e s e e e s s s e s e e e s e s s e s es s e s e eee e s 7
INSERTING A NEW LINE IN A DATABASE ... eee e 8
BOUNCING BALL .ot e e e e s e e s s e e e e s e e e s s s s e s s s e s eeseseseseeseseees 9
CIRCLES oo e e e s e e s e e e e s e e s s e e e s s s e s e s s e s s e e es e eee e e esenen 9

LI ZOOMING oottt e ettt e s e s e s e e et e e e e e e e e et et et e s e s e s e s e s et e s e s et et et e s e e s e e esesesesenn 12
ANIMATION EXAMPLE ..ot ee oo e s e s s s s s s s e e e e esesesesesesesesesesesesesesesesesesssases 13

[J TWO-VOICE “ICE-CREAM VAN SOUND «...eevee e ses s s s s sessesesesseees 14

I DD E X ettt ettt e et e ettt et e e e e e e e eaneansaanaansansanssensansansnsansansansansnsensensansanensensensansnnens 15

CEXAMPLE PROGRAMS ‘

OPL

This document contains example programs written in OPL. The programs are not intended to
demonstrate all the features of OPL, but they should give you a few hints. To find out more about a
particular command or function, refer to the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

There are some further example programs in the ‘Advanced Topics’ section of the ‘Advanced.pdf’
document.

WHEN YOU'RE TYPING IN

* You can type procedures in all uppercase, all lowercase or any mixture of the two. Be careful with character
codes, though - %A is different to %a.

e When there is more than one command or function on a line, separate each one with a space and colon - for
example:
CLS :PRINT “hello” :GET
However, the colon is optional beforé&R&Mstatement for example:
CLS REM Clears the screen
and
CLS :REM Clears the screen
are both OK.

e Put a space between a command and the arguments which follow it - for eR&tgleas$. But don't put
a space between a function and the arguments in brackets - for exziiR$£16) .

e It doesn’t matter how many spaces or tabs you have at the beginning of a line.

ERRORS

The following programs do not include full error handling code. This means that they are shorter and easier to
understand, but may fail if, for example, you enter the wrong type of input to a variable.

If you want to develop other programs from these example programs, it is recommended that you add some error
handling code to them. See the ‘Error Handling’ section of the ‘Advanced.pdf’ document for further details.

COUNTDOWN TIMER
|:| For the Series 5:

PROC timer:
LOCAL min&,sec&,secs&,i%
sec&=1
dINIT “Countdown timer”
dLONG min&,“Minutes”,0,59
dLONG sec&,“Seconds”,0,59
dBUTTONS “Cancel”,-27,“Start”,%s
IF DIALOG=%s
FONT 12,16
secs&=sec&+60*min&
WHILE secs&
PAUSE -20 REM a key gets us out
IF KEY
RETURN
ENDIF

CEXAMPLE PROGRAMS ‘

OPL

secs&=secs&-1
AT 20,6 :PRINT NUM$(secs&/60,-2);"m”
AT 24,6 :PRINT NUM$(mod&:(secs&,int(60)),-2);"s”

ENDWH

DO
BEEP 5,300
PAUSE 10
IF KEY :BREAK :ENDIF
i%=i%+1

UNTIL i%=10

ENDIF
ENDP

PROC modé&:(a&,b&)
REM modulo function
REM computes (a&)mod(b&)
RETURN a&-(a&/b&)*b&
ENDP

|:| For the Series 3c and Siena:

PROC timer:
LOCAL miné&,sec&,secs&,i%
CACHE 2000,2000
sec&=1
dINIT “Countdown timer”
dLONG min&,”Minutes”,0,59
dLONG secé&,”Seconds”,0,59
dBUTTONS “Cancel”,-27,"Start”,13
IF DIALOG=13
STATUSWIN ON
FONT 11,16
secs&=sec&+60*min&
WHILE secs&
PAUSE -20 REM a key gets us out
IF KEY
RETURN
ENDIF
secs&=secs&-1
AT 20,6 :PRINT NUM$(secs&/60,-2);"m”"
AT 24,6 :PRINT NUM$(mod&:(secs&,int(60)),-2);"s”
ENDWH
DO
BEEP 5,300
PAUSE 10
IF KEY :BREAK :ENDIF
1%=i%+1
UNTIL i%=10
ENDIF
ENDP

(EXAMPLE PROGRAMS ‘

OPL

PROC modé&:(a&,b&)
REM modulo function
REM computes (a&)mod(b&)
RETURN a&-(a&/b&)*b&
ENDP

DICE

When the program is run, a message is displayed saying that the dice is rolling. You then press a key to stop it. A
random number from one to six is displayed and you choose whether to roll again or not.

PROC dice:
LOCAL dice%
DO
CLS :PRINT “DICE ROLLING:”
AT 1,3 :PRINT “Press a key to stop”
DO
dice%=(RND*6+1)
AT 1,2 :PRINT dice%
UNTIL KEY
BEEP 5,300
dINIT “Roll again?”
dBUTTONS “No”,%N,"“Yes”,%Y
UNTIL DIALOG<>%y
ENDP

RANDOM NUMBERS

In this example, the RND function returns a random floating-point number, between 0 and 0.9999999... It is then
multiplied by 6, and 1 is added, to give a number from 1 to 6.9999999... This is rounded down to a whole
number (from 1 to 6) by assigning to the intediee% .

BIRTHDAYS

This procedure finds out on which day of the week people were born.

PROC Birthday:

LOCAL dayé&,month&,yearé&,DaylnWk%

DO
dINIT
dTEXT “",“Enter your date of birth”,2
dTEXT “”,“Use numbers, eg 23 12 1963",$202
dLONG day&,“Day”,1,31
dLONG month&,“Month”,1,12
dLONG year&,“Year”,1900,2155
IF DIALOG=0

BREAK

ENDIF
DayInWk%=DOW(day&,month&,year&)
CLS :PRINT DAYNAMES$(DayInWk%),day&, month&,year&

(EXAMPLE PROGRAMS ‘

OPL

dINIT “Again?”
dBUTTONS “No”",%N,“Yes”,%Y
UNTIL DIALOG<>%y
ENDP

The DOW function works out what day of the week, from 1 to 7, a date is. The DAYNAMES$ function then
converts this to MON, TUE and so on. MON is 1 and SUN is 7.

DATA FILES

The following module works on a data file callBATA containing names, addresses, post codes and telephone
numbers. It assumes this file has already been created with a statement like this:

CREATE “DATA”,A,nm$,ad1%$,ad2$,ad3%,ad4$,tel$

[] To use a database created with the Data application, see the ‘Series 5 Database Handling’ section of the
‘Database.pdf’ document.

[] To use thdATAfile which the Database application uses, you need to‘Op&T\DATA.DBF”

The first procedure is the controlling, calling procedure, offering you choices. The next two let you add or edit
records.

PROC files:
GLOBAL nm$(255),ad1$(255),ad2$(255)
GLOBAL ad3$(255),ad4$(255),tel$(255),title$(30)
LOCAL g%
OPEN “DATA”, A,nm$,ad1$,ad2$,ad3%$,ad4$,tels
DO
CLS
dINIT “Select action”
REM !'Swap prompt and body in dTEXT for Series 3c and Siena!!
dTEXT “Add new record”,”,$402
dTEXT “Find and edit a record”,*”,$402
g%=DIALOG
IF g%=2
add:
ELSEIF g%=3
edit:
ENDIF
UNTIL g%=0
CLOSE
ENDP

PROC add:
nm$="":ad1$="":ad2$=""
ad3$="":ad4$=""tel$=""
title$="Enter a new record”
IF showd%:

APPEND
ENDIF
ENDP

CEXAMPLE PROGRAMS ‘

OPL

PROC edit:
LOCAL search$(30),p%
dINIT “Find and edit a record”
dEDIT search$,“Search string”,15
IF DIALOG
FIRST
IF FIND(“*"+search$++")=0
ALERT(*No matching records”)
RETURN
ENDIF
DO
nm$=A.nm$:ad1$=A.ad1$:ad2$=A.ad2$
ad3%=A.ad3$:ad4$=A.ad4$:tel$=A.tel$
title$="Edit matching record”
IF showd%:
UPDATE :BREAK
ELSE
NEXT
ENDIF
FIND(“*"+search$+*")
IF EOF
ALERT(“No more matching records”)
BREAK
ENDIF
UNTIL O
ENDIF
ENDP

PROC showd%:
LOCAL ret%
dINIT title$
dEDIT nm$,“Name”,25
dEDIT ad1$,“Street”,25
dEDIT ad2$,“Town”,25
dEDIT ad3$,“County”,25
dEDIT ad4$,“Postcode”,25
dEDIT tel$,“Phone”,25
ret%=DIALOG
IF ret%
A.nm$=nm$:A.ad1$=adl$:A.ad2$=ad2$
A.ad3%$=ad3$:A.ad4$=ad4$:A.tel$=tel$
ENDIF
RETURN ret%
ENDP

(EXAMPLE PROGRAMS ‘

OPL

When you use the Data application and enter or change an entry, it goes to the end of the database file. However,
if, in your address book, each entry begins with a person’s second name - for eXatepldazel - you

can use this program to re-order all of the entries. This doesn’t change the way you find an entry, but after

running it you can step through it like a paper address book, or print it out neatly ordered.

This procedure can be used as required for any data file in internal memory or on memory disk for the Series 5
or on Ram SSDs for the Series 3c. For the Series 3c, note that if used on a data file held on a Flash SSD it would
use up disk space each time you run it. The dialog it shows is set to show data files used by Data.

You can adapt this procedure to sort other types of data files in other ways.

é Note that on the Series 5, this would be better done with the more advanced features available in the
Database OPX. See the ‘Using OPXs on the Series 5’ section of the ‘Advanced.pdf’ document for more
details of this. You could also use restriction of files by UID in the dFILE keyword to restrict to databases
only.

PROC reorder:
LOCAL last%,e$(255),e%,lpos%,n$(255),c%
n$="\dat*.dbf”
dINIT “Re-order Data file”
dFILE n$,”Filename”,0
IF DIALOG REM returns 0 if cancelled
OPEN n$,a,a$
LAST :last%=POS
IF COUNT>0
WHILE last%<>0
POSITION last% :e%=POS
e$=UPPER$(a.a$)
DO
IF UPPER$(a.a$)<e$
e$=UPPER%$(a.a$) :e%=POS
ENDIF
Ipos%=POS :BACK
UNTIL pos=1 and Ipos%=1
POSITION e%

PRINT e$
UPDATE :last%=last%-1
ENDWH
ENDIF
CLOSE
ENDIF
GET
ENDP

If you try to reorder a file which is already open (i.e. shown in bold on the System screen) you wilFéee a “
is in use’ (‘File or device in use’ on the Series 3c) error. You should close the file and then try again.

(EXAMPLE PROGRAMS | 6)

OPL

STOPWATCH

Here is a simple stopwatch with lap times. Note that the Psion switches off automatically after a time if no keys
are pressed; you may want to disable this feature (from the Control Panel in the System screen on the Series 5 or
with the ‘Auto switch off’ option in the System screen on the Series 3c) before running this program.

Each timing is only accurate to within one second, as the procedure is based on the SECOND function.

PROC watch:
LOCAL k%,s%,se%,mi%
FONT 11,16
AT 20,1 :PRINT “Stopwatch”
AT 15,11 :PRINT “Press a key to start”
GET
DO
CLS :mi%=0 :5e%=0 :s%=SECOND
AT 15,11 :PRINT “ S=Stop, L=Lap "
loop::
k%=KEY AND $ffdf REM ensures upper case
IF k%=%S
GOTO pause::
ENDIF
IF k%=%L
AT 20,6 :PRINT “Lap: ";mi%;":";
IF se%<10 :PRINT “0”; :ENDIF
PRINT se%;" ",
ENDIF
IF SECOND<>s%
s%=SECOND :se%=se%+1
IF se%=60 :5€%=0 :mi%=mi%+1 :ENDIF
AT 17,8
PRINT “Mins”,mi%,"Secs”,
IF se%<10 :PRINT “0”; :ENDIF
PRINT se%;" ",
ENDIF
GOTO loop::
pause::
mINIT
MCARD “Watch”,“Restart”,%r,"“Zero”,%z,“Exit",%Xx
k%=MENU
IF k%=%r
GOTO loop::
ENDIF
UNTIL k%<>%z
ENDP

(EXAMPLE PROGRAMS ‘

OPL

If you insert a new label in a database, the entries will no longer match up with the labels. Rather than using the
‘Update’ option on every entry, to insert a suitable blank line in each one, you can use this program to do this for
the entire data file.

The Data application allows you to use as many lines (fields) as you want in an entry (record); OPL can only
access 32 fields. This program only lets you insert a new field in the first 16 fields, although you can adapt the
program simply to check up to 31 fields.

If, in Data, you enter a line longer than 255 characters, it is stored as two fields, with a character of code 20 at
the start of the second field. This program correctly handles any such fields.

The program checks that the 17th field is blank, as it will be overwritten by what was the 16th field. If a long
entry has a 17th field, and it contains text, the program skips this entry. The rest of longer entries - even if there
are more than 32 fields will be unchanged.

If you insert a new field at a position below the last label, Data will not show it, even when using ‘Update’.

The maximum record length in OPL is 1022 characters. The OPEN command will display a ‘Record too large’
error if the file contains a record longer than this.

PROC label:

LOCAL a%,h%,c%,d%,s$(128),5&,i$(17,255)

s$="\dat*.dbf"

dINIT “Insert new field”

dFILE s$,“Data file”,0

dLONG sé&,“Break at line (1-16)",1,16

IF DIALOG
OPEN s$,A,a$,b%,c$,d$,e$,1$,9%,h$,i$,j$,k$,1$,m$,n$,0$,p$,q$
c%=COUNT :a%=1
WHILE a%<=c%

AT 1,1 :PRINT “Entry”,a%,”of”,c%,

IF A.g$=" REM Entry (hopefully) not too long
i$(1)=A.a$:i$(2)=A.b$:i$(3)=A.c$:i$(4)=A.d$
i$(5)=A.e$:i$(6)=A.f$:iB(7)=A.g$:i$(8)=A.h$
i$(9)=A.i$:[i$(10)=A.j$:i$(11)=Ak$:i$(12)=A.1$
i$(13)=A.m$:i$(14)=A.n$:i$(15)=A.0$:i$(16)=A.p$
d%=0 :b%=0

WHILE d%<s&+b% REM find field to break at
d%=d%+1
IF LEFT$(i$(d%),1)=CHR$(20) REM line>255...

b%=h%+1 REM ...so it's 2 fields

ENDIF

ENDWH

b%=17

WHILE b%>d% REM copy the fields down
i$(b%)=i$(b%-1) :b%=b%-1

ENDWH

i$(d%)="" REM and make an empty field

A.a$=i$(1) :A.b$=i$(2) :A.c$=i$(3) :A.d$=i$(4)
A.e$=i$(5) A f$=i$(6) :A.g$=i$(7) :A.h$=i$(8)
Ai$=i$(9) :A.j$=i$(10) A k$=i$(11) :A.1$=i$(12)
A.m$=i$(13) :A.n$=i$(14) :A.0$=i$(15) :A.p$=i$(16)

(EXAMPLE PROGRAMS | 8)

OPL

A.q$=i$(17)

ELSE
PRINT “has too many fields”
PRINT “Press a key...” :GET

ENDIF

UPDATE :FIRST

a%=a%+1

ENDWH :CLOSE
ENDIF
ENDP

BOUNCING BALL

PROC bounce:
LOCAL posX%,posY%,changeX%,changeY%,k%
LOCAL scrx%,scry%,info%(10)
SCREENINFO info%()
scrx%=info%(3) :scry%=info%(4)
posX%=1 :posY %=1
changeX%=1 :changeY%=1
DO
posX%=posX%-+changeX%
posY%=posY%-+changeY%
IF posX%=1 OR posX%=scrx%
changeX%=-changeX%
REM at edge ball changes direction

BEEP 2,600 REM low beep
ENDIF
IF posY%=1 or posY%-=scry% REM same fory
changeY%=-changeY%
BEEP 2,200 REM high beep
ENDIF
AT posX%,posY% :PRINT “07;
PAUSE 2 REM Try changing this
AT posX%,posY% :PRINT “"; REM removes old ‘0O’ character
k%=KEY
UNTIL k%
ENDP
CIRCLES

[] Hereisan example program for drawing circles or ellipses, filled or unfilled for the Series 5:

PROC draw:

LOCAL d%

DO
dINIT “Draw a circle or an ellipse?”
dBUTTONS “Circle”,%c OR $200,“Ellipse”,%e OR $200,“Cancel”,-27
d%=DIALOG
IF d%=%c

circle:

ELSEIF d%=%e

(EXAMPLE PROGRAMS ‘

OPL

ellipse:
ENDIF
UNTIL d%=0
ENDP

PROC circle:
LOCAL x&,y&,r&,f%
dINIT “Drawing parameters”
x&=320 :dLONG x&,"Centre x position”,0,639
y&=120 :dLONG y&,"Centre y position”,0,249
r&=20 :dLONG ré&,"Radius”,1,320
f%=0 :dCHECKBOX %, Filled”
dBUTTONS “Draw”,%d,“Cancel”,-27
IF DIALOG
gAT X&,y&
gCIRCLE r&,f%
GET
gCLS
ENDIF
ENDP

PROC ellipse:
LOCAL x&,y&,hr&,vr&,f%
dINIT “Drawing parameters”
x&=320 :dLONG x&,"Centre x position”,0,639
y&=120 :dLONG y&,"Centre y position”,0,249
hr&=20 :dLONG hr&,”Horizontal Radius”,1,320
vr&=20 :dLONG vr&,"Vertical Radius”,1,320
f%=0 :dCHECKBOX %, Filled”
dBUTTONS “Draw”,%d,“Cancel”,-27
IF DIALOG
gAT X&,y&
gELLIPSE hr&,vr&,f%
GET
gCLS
ENDIF
ENDP

[] Here arewo example programs for drawing circles - the first hollow, the second filled for the Series 3c and
Siena:

PROC circle:
LOCAL a%(963),c&,d%,x&,y&,r&,h,y%,y1%,c2%
dINIT “Draw a circle”
x&=240 :dLONG x&,“Centre x pos”,0,479
y&=80 :dLONG y&,“Centre y pos”,0,159
r&=20 :dLONG r&,“Radius”,1,120
h=1 :dFLOAT h,“Relative height”,0,999
IF DIALOG
a%(1)=x&+r& :a%(2)=y& :a%(3)=4*r&
c&=1 :d%=2*r& :y1%=0

CEXAMPLE PROGRAMS ‘

OPL

WHILE c&<=d%
C2%=c&*2 :y%=-SQR(r&*c2%-c&**2)*h
a%(2+c2%)=-2 :a%(3+c2%)=y%-y1%
y1%=y% :c&=c&+1

ENDWH

c&=1

WHILE c&<=d%
Cc2%=c&*2 :y%=SQR(r&*c2%-c&**2)*h
a%(2+a%(3)+c2%)=2 :a%(3+a%/(3)+c2%)=y%-y1%
y1%=y% :c&=c&+1

ENDWH

gPOLY a%()

ENDIF
ENDP

PROC circlef:
LOCAL c&,d%,x&,y&,r&,h,y%
dINIT “Draw a filled circle”
x&=240 :dLONG x&,“Centre x pos”,0,479
y&=80 :dLONG y&,“Centre y pos”,0,159
r&=20 :dLONG r&,“Radius”,1,120
h=1 :dFLOAT h,"Relative height”,0,999
IF DIALOG
c&=1 :d%=2*r& :gAT x&-r&,y& :gLINEBY 0,0
WHILE c&<=d%
y%=-SQR(r&*c&*2-c&**2)*h
AT X&-r&+c&,y&-y% :gLINEBY 0,2*y%
c&=c&+1
ENDWH
ENDIF
ENDP

If you use gUPDATE OFF after the IF DIALOG line, and gUPDATE ON before the ENDIF, the procedure will
run a little faster. However, all but the smaller circles will be drawn rather jerkily, piece by piece.

(EXAMPLE PROGRAMS ‘

OPL

This is an example for the Series 3c only. The Series 5 does not have status windows and the Siena does not
have large status windows owing to its screen size.

For each of the three types of status window, this program changes the font to implement zooming.

Press Psion-Z to cycle between small, medium and large fonts, and Shift-Psion-Z to cycle in the other direction.
Esc changes to the next status window.

As well as changing the font and style for the text window (for PRINT etc.), the FONT command automatically
changes the default graphics window size (ID=1) and the text window size to fit exactly in the space left by any
status window. (A special feature not used here iISFOMNT -$3fff,0 just changes the window sizes

without changing font).

The procedurelispinfo: uses the command SCREENINFO to display the margin sizes in pixels between the
default window and the text window, the text screen size in character units, and the text screen’s character width
and line height in pixels.

PROC tzoom:
STATUSWIN OFF REM no status window
zoom: REM display with zooming
STATUSWIN ON,2 REM large status window
zoom:
STATUSWIN ON,1 REM and small
zoom:

ENDP

PROC zoom:
LOCAL font%(3),font$(3,20),style%(3)
LOCAL g%,km%,zoom%
zoom%-=1
font%(1)=13 :font$(1)="(Mono 6x6)" :style%(1)=0
font%(2)=4 :font$(2)="(Mono 8x8)" :style%(2)=0
font%(3)=12 :font$(3)="(Swiss 16)" :style%(3)=16
0%=%z+$200

DO
IF g%=%z+$200
IF km% AND 2 REM Shift-PSION-Z
zoom%=zoom%-1
IF zoom%<1 :zoom%=3 :ENDIF
ELSE REM PSION-Z
zoom%=zoom%-+1
IF zoom%>3 :zoom%=1 :ENDIF
ENDIF
FONT font%(zoom%),style%(zoom%o)
PRINT “Font=";font%(zoom%),font$(zoom%),
PRINT “Style=";style%(zoom%b)
dispinfo:
PRINT rept$(“1234567890",15)
gBORDER 0
ENDIF
g%=GET
km%=KMOD

(EXAMPLE PROGRAMS | 12)

OPL

UNTIL g%=27
ENDP

PROC dispinfo:
LOCAL scrinfo%(10)
SCREENINFO scrinfo%()
PRINT “Left margin=";scrinfo%(1),
AT 17,2 :PRINT “Top margin=";scrinfo%(2)
PRINT “Screen width=";scrInfo%(3)
AT 17,3 :PRINT “Screen height=";scrinfo%(4)
PRINT “Char width=";scrIinfo%(7)
AT 17,4 :PRINT “Line height=";scrIinfo%(8)
ENDP

This program requires five bitmap fileere.pic tofive.pic . Each of these would differ slightly. They
might, for example, be five ‘snapshots’ of a running human figure, each with the legs at a different point in their
cycle.

The program copies each bitmap into a window of its own, then makes each window visible in turn, each time
slightly further across the screen.

To make bitmap files, first draw the pattern you want with any of the graphics drawing commands. (Use
gLINEBY 0,0 to draw single dots.) When the pattern is complete, use gSAVEBIT to make the bitmap file. For
advanced animation, you could use a sprite as described in the ‘Using OPXs on the Series 5’ section of the
‘Advanced.pdf document for the Series 5, and as described in the ‘Advanced Topics’ section of the
‘Advanced.pdf document for the Series 3c and Siena.

PROC animate:
LOCAL id%(5),i%,j%,s$(5,10),w%,h%,edge%
REM example width and height
w%=16 :h%=28
REM screen edge - use 480 for Series 3c and 240 for Siena
edge%=640
REM need not have “.pic” in the following for Series 3c and Siena
s$(1)="one.pic” :s$(2)="two.pic” :s$(3)="three.pic”
s$(4)="four.pic” :s$(5)="five.pic” :j%=1
WHILE [%<6
i%=gLOADBIT(s%$(j%))
id%(j%)=gCREATE(0,0,w%,h%,0)
gCOPY i%,0,0,w%,h%,3
gCLOSE % :j%=)%+1

ENDWH

i%=0 :gORDER 1,9

DO
1%=(1%-5*(1%/5))+1 REM (i% MOD 5)+1
gVISIBLE OFF REM previous window
gUSE id%(j%) REM new window
gSETWIN i%,20 REM position it
gORDER id%(j%),1 REM make foreground
gVISIBLE ON REM make visible

i%=i%+1 :PAUSE 2
UNTIL KEY OR (i%>(edge%-w%))
ENDP

(EXAMPLE PROGRAMS | 18)

OPL

[] TWO-VOICE “ICE-CREAM VAN” SOUND
This example is for the Series 3c and Siena only.

The following program plays a rising and falling scale. It uses the amplifier-driven loudspeaker device (with
device driver SND:) which allows you to play tunes using two-note chords - ie it ha®ives

This program uses 1/O keywords as described in the ‘Advanced Topics’ section. Take care to enter them exactly
as shown here.

PROC main:
LOCAL ret%,sndHand%
ret%=I00PEN(sndHand%,“SND:",-1) REM open the device
IF ret%<0
PRINT “Failed to start”
PRINT err$(err)
GET
ELSE
icecream:(sndHand%)
IOCLOSE(sndHand%)
ENDIF
ENDP

PROC icecream:(sndHand%)
LOCAL notes1%(4),notes2%(14)
LOCAL slstat%,lenl1%,len2%
REM define 1st voice

notes1%,(1)=1048 :notes1%(2)=96 REM freq, duration
notes1%(3)=524 :notes1%(4)=48
len1%=2 REM number of notes in voice 1

REM define 2nd voice
notes2%,(1)=1048 :notes2%(2)=16
notes2%,(3)=1320 :notes2%(4)=16
notes2%;(5)=1568 :notes2%(6)=16
notes2%,(7)=2092 :notes2%(8)=16
notes2%,(9)=1568 :notes2%(10)=16
notes2%,(11)=1320 :notes2%(12)=16
notes2%,(13)=1048 :notes2%(14)=48
len2%=7 REM number of notes in voice 2
IOC(sndhand%,1,s1stat%,notes1%:(),len1%)
REM voice 1 asynchronous
IOW(sndHand%,2,notes2%(),len2%)
REM voice 2 synchronous
IOWAITSTAT slstat%
ENDP
notes1%() andnotes2%() are set up to holtn1% andlen2% notes to be played on voice 1 and voice 2
respectively. The number of notes to each voice must not exceed 16384.

Each note is composed of two consecutive integers in the array with the first of each pair giving the frequency in
Hz (middle A is 440Hz) and the second giving the note duration in quarter-beats per minute.

CEXAMPLE PROGRAMS ‘

OPL

INDEX

F

‘File is in use’ 6
O

ordering a data file 6

P

printing
a data file 6

R

random numbers 3
RND 3

S

sorting a data file 6
stopwatch 7

Z

zooming 12

OPL

ERROR HANDLING

[0 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS

SYNTAX ERROIRS ittt ettt et ettt e et te ittt e eenens 1
PUNCTUATION ERRORS ...t ee e e e e e e e s s eee e s s e e s s seeeeseseseeeen e 1
STRUCTURE ERRORS ..o e e e ee e e s e e s s e e e s e et ee s eeseeees s seee s seeeseeen. 1
ERRORS IN RUNNING PROCEDUWURES ..o 2
ERROR HANDLING FUNCTIONS AND COMMANDS ... seeses s eesesneses 2
STRATEGY oottt e e e e ee s e s e eee s ee e e sees e ee s s seeseseeseseeeeessenees 3

TR AP ettt ettt ettt ettt et et ettt et ettt e, 3
EXAMPLE .o et e et e et e e e e e e e et s e e e e n e, 4
ERR, ERRS AND ERRXSG eeeeeeeteee ettt et ee ettt e et e e et e ee et e e e e e et eeee et eeee e eeaeeneane 4
EXAMPLE .o e e e e e e e e e e et e e e et e e e 4
TRAP INPUT/EDIT AND THE ESC KEY ettt eeeee et ee e e e st eeeese s e eeee s s seseeseseeens 5
ONERR...CONERR OFF .ot ettt et et e e e, 5
EXAMPLE ..o e e e e e e e e e s e e e e e e e et r e e e e ee e eeen. 6
WHEN TO USE ONERR OFF ..ot e e e e e ee s s s s eeee s s s eeeenseseeees 6
MULTIPLE ONERRS <.ttt ee e e e e ee e e eee s s s e e s e e eeee s sesesees s e e eeseseseesseeesenen. 7
TRAP AND ONERR ...t s e e et ee e et e e s e e s seeeee s eeseee s seseeeesseseeeeeseeees 7

R AISE <o ettt ettt ettt e e e e e e ee e 7
EXAMPLE .-ttt e e e e e et e e e e et e e e et e e e e e e e et e e e e e e e et eeee e eree e e ereeaeeeens 7

L] TRAP RAISE ERRY6 et ee e e e e e e e e e ee e s eeee e e e e e e s e seseeeeseseseesseeeseeeseeeeen 8
ERROR MES S A GES ..o et 8
FILE AND DEVICE ERRORS ..o e e s e eeese e e e eeeee s e e s eeeseeseseseeseseeseseeseseesaseeens 9
TRANSLATOR ERRORS ... e e s eeee e e s s s e e s s eees s s sees s eeeeseseeseeens 10
OPL SPECIFIC ERRORS ..o eee e et ee e e s e eee e e e e s e s e eese s e s seeseseeseeeeeseeeseeeeseeeeeeeen 11

(] SERIES 5 SPECIFIC ERRORS ...t ee e e e e e e s eeee s e e e e s s seeeessesees 12
1NN 1 = G RPR 13

(ERROR HANDLING ‘

OPL

SYNTAX ERRORS

Syntax errors are those which are reported when translating a procedure. (Other errors can occur while you're
running a program.) The OPL translator will return you to the line where the first syntax error is detected.

All programming languages are very particular about the way commands and functions are used, especially in
the way program statements are laid out. Below are a number of errors which are easy to make in OPL. The
incorrect statements are in bold and the correct versions are on the right.

PUNCTUATION ERRORS
Omitting the colon between statements on a multi-statement line:

Incorrect Correct
a$="text” PRINT a$ a$="text” :PRINT a$

Omitting the space before the colon between statements:

Incorrect Correct

a$=b% :PRINT a$ a$=b$:PRINT a$
Omitting the colon after a called procedure name:
Incorrect Correct

PROC procl: PROC proc1:
GLOBAL a,b,c GLOBAL a,b,c
proc2 proc2:

ENDP ENDP

Using only 1 colon after a label in GOTO/ONERR/VECTOR (instead of O or 2):

Incorrect Correct
GOTObelow: GOTO below
below:: below::

STRUCTURE ERRORS

The DO...UNTIL, WHILE...ENDWH and IF...ENDIF structures can produce a ‘Structure fault’ error if used
incorrectly:

e Mixing up the three structures - e.g. by using DO...WHILE instead of DO...UNTIL.
e Using BREAK or CONTINUE in the wrong place.
e Using ELSE IF with a space, instead of ELSEIF.

e VECTOR...ENDV can also produce a ‘Structure fault’ error if used incorrectly.

Attempting to nest any combination of these structures more than eight levels deep will produce a ‘Too
complex’ error.

CERROR HANDLING ‘

OPL

ERRORS IN RUNNING PROCEDURES

OPL may display an error message and stop a running program if certain ‘error’ conditions occur. This may
happen because:

* There is a mistake, dug, in your program, which could not be detected during translation - for example, a
calculation has involved a division by zero.

e A problem has occurred which prevents a command or function from working - for example, an APPEND
command may fail because a disk is full.

Unless you include statements which can handle such errors when they occur, OPL will use its own error
handling mechanism. The program will stop and an error message be displayed. The first line gives the names of
the procedure in which the error occurred, and the module this procedure is in. The second line is the ‘error
message’ - one of the messages listed at the end of this section. If appropriate, you will also see a list of variable
names or procedure names causing the error.

If you were editing the module with the Program editor and you ran it from there, you would also be taken back
to editing the OPL module, with the cursor at the line where the error occurred.

ERROR HANDLING FUNCTIONS AND COMMANDS

To prevent your program being stopped by OPL when an error occurs, include statements in your program
which anticipate possible errors and take appropriate action. The following error handling facilities are available
in OPL:

e TRAP temporarily suppresses OPL'’s error processing.
 ERR and ERR$ (and ERRX$ on the Series 5) find out what kind of error has occurred.
« ONERR establishes an error handler which can suppress OPL’s error processing over whole modules.

« RAISE can be used to simulate error conditions.

These facilities put you in control and must be used carefully.

CERROR HANDLING ‘

OPL

STRATEGY

You should design the error handling of a program in the same way as the program itself. OPL works best when
programs are built up from procedures, and you should design your error handling on the same basis. Each
procedure should normally contain its own local error handling:

Main procedure

PROC main:

PROC a:

& > \
Called procedures

PROC c:

o
v

U

P

o

O

o

Each procedure has its
own error handling
| statements shown as

The error handling statements can then be appropriate to the procedure. For example, a procedure which
performs a calculation would have one type of error handling, but another procedure which offers a set of
choices would have another.

TRAP

[] TRAP can be used with any of these commands: APPEND, BACK, CANCEL, CLOSE, COPY, CREATE,

DELETE, ERASE, EDIT, FIRST, gCLOSE, gCOPY, gFONT, gPATT, gSAVEBIT, gUNLOADFONT,
gUSE, INPUT, INSERT, LAST, LCLOSE, LOADM, LOPEN, MKDIR, MODIFY, NEXT, OPEN,
OPENR, POSITION, PUT, RAISE (see below), RENAME, RMDIR, UNLOADM, UPDATE and USE.

[] TRAP can be used with any of these commands: APPEND, BACK, CACHE, CLOSE, COMPRESS,

COPY, CREATE, DELETE, ERASE, EDIT, FIRST, gCLOSE, gCOPY, gFONT, gPATT, gSAVEBIT,
gUNLOADFONT, gUSE, INPUT, LAST, LCLOSE, LOADM, LOPEN, MKDIR, NEXT, OPEN, OPENR,
POSITION, RENAME, RMDIR, UNLOADM, UPDATE and USE.

The TRAP command immediately precedes any of these commands, separated from it by a space - for example:
TRAP INPUT a%

If an error occurs in the execution of the command, the program does not stop, and the next line of the program
executes as if there had been no error. Normally you would use ERR on the line after the TRAP to find out what
the error was.

CERROR HANDLING ‘

OPL

EXAMPLE

When INPUT is used without TRAP and a text string is entered when a number is required, the display just
scrolls up and & is shown, prompting for another entry. With TRAP in front of INPUT, you can handle bad
entries yourself:

PROC trapinp:
LOCAL profit%
DO
PRINT
PRINT “Enter profit”,
TRAP INPUT profit%

UNTIL ERR=0
PRINT “Valid number”
GET

ENDP

This example uses the ERR function, described next.

ERR, ERR$ AND ERRX$
When an error occurs in a program, check what number the error was, with the ERR function:
e%=ERR

If ERR returns zero, there was no error. The value returned by ERR is the number of the last error which
occurred it changes when a new error occurs. TRAP sets ERR to zero if no error occurred. Check the number it
returns against the error messages listed at the end of this section.

The ERR$ function gives you the message for error nuefier
e$=ERR$(e%)

You can also use ERR and ERRS$ together:
e$=ERR$(ERR)

This returns the error message for the most recent error.

[The ERRX$ function gives you the extended message for the current error:

e$=ERRX$

For example, ‘Error iMODULE\PROCEDUREEXTERNJIEXTERNZ..". This is the message which would
have been presented as an alert if the error had not been trapped. The use of this function gives the list of
missing externals and procedure names when an error has been trapped.

EXAMPLE
The lines below anticipate that error number -101 (‘File already open’) may occur. If it does, an appropriate
message is displayed.

TRAP OPEN “main”,A,a$

e%=ERR
IF e% REM Checks for an error
IF e%=-101
PRINT “File is already open!”
ELSE

CERROR HANDLING ‘

OPL

PRINT ERR$(€%)
ENDIF
ENDIF

The inner IF...ENDIF structure displays either the message in quotes if the error was number -101, or the
standard error message for any other error.

TRAP INPUT/EDIT AND THE ESC KEY

If in response to @RAP INPUT or TRAP EDIT statement, the Esc key is pressed while no text is on the input/
edit line, the ‘Escape key pressed’ error (number -114) will be raised. (This error will only be raised if the
INPUT or EDIT has been trapped. Otherwise, the Esc key still leaves you editing.)

You can use this feature to enable someone to press the Esc key to escape from editing or inputting a value. For
example:

PROC traplnp:
LOCAL a%,b%,c%
PRINT “Enter values.”
PRINT “Press Esc to exit”
PRINT “a% =", :TRAP INPUT a% :PRINT
IF ERR=-114 :GOTO end :ENDIF
PRINT “b% =", :TRAP INPUT b% :PRINT
IF ERR=-114 :GOTO end :ENDIF
PRINT “a%*b% =",a%*b%
PAUSE -40
RETURN
end::
PRINT :PRINT “OK, finishing...”
PAUSE -40
RETURN
ENDP

ONERR...ONERR OFF

ONERR sets up an error handler. This means that, whenever an error occurs in the procedure containing
ONERR, the program will jump to a specified label instead of stopping in the normal way. This error handler is
active until an ONERR OFF statement.

You specify the label after the word ONERR.

The label itself can then occur anywhere in the same procedure - even above the ONERR statement. After the
label should come the statements handling whatever error may have caused the program to jump there. For
example, you could just have the statenRRINT ERR$(ERR) to display the message for whatever error
occurred.

All statements after the ONERR command, including those in procedures called by the procedure containing the
ONERR, are protected by the ONERR, until the ONERR OFF instruction is given.

CERROR HANDLING ‘

OPL

EXAMPLE

PROC divO0:
ONERR errHand
PRINT 1/

EM cause divide by zero error -8

RETURN REM don't get to this line

errHand::

ONERR OFF

PRINT “Error:";err,err$(err)

IF ERR=-8
REM divide by zero error = -8
PRINT “Division by zero is illegal”

ENDIF

GET

ENDP

\ Statements protected

by ONERR

If an error occurs in the lines betwe®NERR errHand andONERR OFEthe program jumps to the label

errHand:: where a message is displayed.

Always cancel ONERR with ONERR OFF immediately after the label.

WHEN TO USE ONERR OFF

You could protect the whole of your program with a single ONERR. However, it's often easier to manage a set
of procedures which each have their own ONERR...ONERR OFF handlers, each covering their own procedure.
Secondly, an endless loop may occur if all errors feed back to the same single label.

For example, the diagram below shows how an error handler is left active by mistake. Two completely different
errors cause a jump to the same label, and cause an inappropriate explanatory message to be displayed. In this

example an endless loop is created becaese

PROC first:
ONERR label

PRINT “Log error”

PROC next:
PRINT 2/0
ONERR OFF

ENDP

is called repeatedly:

CERROR HANDLING ‘

OPL

You can have more than one ONERR in a procedure, but only the most recent ONERR is active. Any errors
cause a jump to the label for the most recent ONERR.

ONERR OFF disableall ONERRsin the current procedure. If there are ONERRSs iother procedures above
this proceduredalling proceduresthese ONERRS are not disabled.

TRAP has priority over ONERR. In other words, an error from a command used with TRAP will not cause a
jump to the error handler specified with ONERR.

The RAISE command generates an error, in the same way that OPL raises errors whenever it meets certain
conditions which it recognises as unacceptable (for example, when invalid arguments are passed to a function).
Once an error has been raised, either by OPL itself or by the RAISE command, the error-handling mechanism
currently in use takes effect - the program will stop and report a message, or if you've used ONERR the program
will jump to the ONERR label.

There are two reasons for using RAISE:

* You may want to mimic OPL’s error conditions in your own procedures. For example, if you create a new
procedure which performs a calculation and returns a value, you may want to RAISE an ‘Overflow’ or
‘Divide by zero’ error if unsuitable numbers are passed as parameters.

In this case, you would RAISE one of the standard error numbers. You could handle this yourself with
ONERR, or let OPL handle it in the normal way.

e OPL raises only a limited range of errors for general use, and you may want to raise new kinds of error
codes specific to your program or particular circumstances.
In this case, you would RAISE a new error number. With ONERR on, RAISE would go to the ONERR
label, where you would have code to interpret your new error numbers. You could then display appropriate
messages.
You can use any positive number (from 0 to 127) as a new error code. Do not use any of the numbers in the
list that follows.

You may also find RAISE useful for testing your error handling.

PROC main:

REM calling procedure

PRINT myfunc:(0.0) REM will raise error -2
ENDP

PROC myfunc:(x)
LOCAL s
REM returns 1/sqr(x)
s=SQR(X)
IF s=0
RAISE -2

(ERROR HANDLING | 7)

OPL

REM ‘Invalid arguments’
REM avoids ‘divide by zero’
ENDIF
RETURN (1/s)
ENDP

This uses RAISE to raise the ‘Invalid arguments’ error not the ‘Divide by zero’ error, since the former is the
more appropriate message.

[] TRAP RAISE ERR%

TRAP RAISE err% can be used to clear the TRAP flag and sets ERR vabkre%o. For example, using
err%=0 will clear ERR.

ERROR MESSAGES

These are the numbers of the errors which OPL can raise, and the message associated with them:

Number Message

-1 General failure

-2 Invalid arguments

-3 OIS error

-4 Service not supported

-5 Underflow (number too small)

-6 Overflow (number too large)

-7 Out of range

-8 Divide by zero

-9 In use (e.g. serial port being used by another program)
-10 No system memory

-11 Segment table full

-12 Semaphore table full

-13 Process table full/Too many processes
-14 Resource already open

-15 Resource not open

-16 Invalid image/device file

-17 No receiver

-18 Device table full

-19 File system not found (e.g. if you unplug cable to PC)
-20 Failed to start

-21 Font not loaded

CERROR HANDLING ‘

OPL

-22
-23
-24
-25

Too wide (dialogs)
Too many items (dialogs)
Batteries too low for digital audio

Batteries too low to write to Flash

FILE AND DEVICE ERRORS

File already exists

File does not exist

Write failed

Read failed

End of file (when you try to read past end of file)
Disk full

Invalid name

Access denied (e.g. to a protected file on PC)
File or device in use

Device does not exist

Directory does not exist

Record too large

Read only file

Invalid I/O request

I/O operation pending

Invalid volume (corrupt disk)

I/O cancelled

Disconnected

Connected

Too many retries

Line failure

Inactivity timeout

Incorrect parity

Serial frame (usually because Baud setting is wrong)
Serial overrun (usually because Handshaking is wrong)
Cannot connect to remote modem

Remote modem busy

No answer from remote modem

CERROR HANDLING ‘

OPL

-61 Number is black listed (you may try a number only a certain number of times; wait a while and try
again)

-62 Not ready

-63 Unknown media (corrupt SSD)

-64 Root directory full (on any device, the root directory has a maximum amount of memory allocated
to it)

-65 Write protected

-66 File is corrupt (Media is corrupt on Series 3c)

-67 User abandoned

-68 Erase pack failure

-69 Wrong file type

TRANSLATOR ERRORS

-70 Missing “

-71 String too long
-72 Unexpected name
-73 Name too long
-74 Logical device must be A-Z (A-D on Series 5)
-75 Bad field name
-76 Bad number

=77 Syntax error

-78 Illegal character
-79 Function argument error
-80 Type mismatch
-81 Missing label

-82 Duplicate name
-83 Declaration error
-84 Bad array size
-85 Structure fault

-86 Missing endp

-87 Syntax Error

-88 Mismatched (or)
-89 Bad field list

-90 Too complex

-91 Missing ,

CERROR HANDLING ‘

OPL

-92
-93
-94
-95

Variables too large
Bad assignment
Bad array index

Inconsistent procedure arguments

OPL SPECIFIC ERRORS

Illegal Opcode (corrupt module translate again)

Wrong number of arguments (to a function or parameters to a procedure)
Undefined externals (a variable has been encountered which hasn’t been declared)
Procedure not found

Field not found

File already open

File not open

Record too big (data file contains record too big for OPL)

Module already loaded (when trying to LOADM)

Maximum modules loaded (when trying to LOADM)

Module does not exist (when trying to LOADM)

Incompatible translator version (OPL file needs retranslation)

Module not loaded (when trying to UNLOADM)

Bad file type (data file header wrong or corrupt)

Type violation (passing wrong type to parameter)

Subscript or dimension error (out of range in array)

String too long

Device already open (when trying to LOPEN)

Escape key pressed

Incompatible runtime version

ODB file(s) not closed

Maximum drawables open (maximum 8 windows and/or bitmaps allowed)
Drawable not open

Invalid Window (window operation attempted on a bitmap)

Screen access denied (when run from Calculator)

CERROR HANDLING ‘

OPL

I:l SERIES 5 SPECIFIC ERRORS

-121 OPX not found

-122 Incompatible OPX version

-123 OPX procedure not found

-124 STOP used in callback from OPX

-125 Incompatible update mode

-126 In database transaction or started changing fields

[] constants for all error values are supplied in Const.oph. See the ‘Calling Procedures’ section of the

‘Basics.pdf’ document for details of how to use this file and Appendix E in the ‘Appends.pdf’ document
for a listing of it.

CERROR HANDLING ‘

OPL

INDEX

E

EDIT
with TRAP 5
ERR 4
ERRS$ 4
error handling
ERR, ERR$, ERRX$ 4
ONERR 5
overview 2
RAISE 7
TRAP 3
error messages
listed 8
with ERR, ERR$, ERRX$ 4
error numbers
listed 8
errors
common syntax 1
while running 2
ERRX$ 4
Esc key, in INPUT, EDIT 5

I
INPUT
with TRAP 5

O
ONERR 5

R
RAISE 7

S

‘Structure fault’ 1
‘Syntax error’ 1
.

TRAP 3
with INPUT,EDIT 5
TRAP RAISE 8

OPL

ADVANCED TOPICS

Many of the subjects covered in this document may provide benefits for all levels of program-
mers.

However, the subjects become progressively more technical. This User Guide cannot cover every
OPL keyword in detail, as some give access to the innermost workings of the Psion. Some of
these keywords are touched on in this section.

PSiON

[0 Copyright Psion Computers PLC 1997
This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS

PROGRAMS, MODULES, PROCEDURESoiiiiiiiiii e, 1
PROGRAMS USING MORE THAN ONE MODULEcivniriiiieireieeecisesieese e 1
CACHEING PROCEDURES FOR SPEEDcouuituieniinisnsinieeiseesseisssssesse s 2
CALLING PROCEDURES BY STRINGS ...ootriiuiirnienisiiseeseesssesesseesesssesssssessesssssessessessons 3
WHERE FILES ARE KEPT ...ttt e e e e 3
WHERE FILES ARE KEPT ON THE SERIES 5 ...ouivuiiuiineisneisesseisseisessessssesesssssesssessessesesenes 3
USING FILE SPECIFICATIONS IN OPL 1..vcccirvvveeeenssssmsseesesssssssssssssssasssssssssssssssssssssssesssssssssesssnnns 4
CURRENT FOLDER ... crvvvvveeeessssanaeee e sssessssssssssae s sessssssssssse s sssssssssssse s sssssssssssnnnesessees 4
CONTROL OF FOLDERS w.cccvvvvvveeeessssssaaeesssssssssessssssssesssssssssssssssssssssasssessssssssssssssssnasssssssssssssesssnens 4
WHERE FILES ARE KEPT ON THE SERIES 3C AND SIENA ...covivniiiiririieeeieiseee e 5
USING FILE SPECIFICATIONS IN OPL w..vcccirrvvveeeeessssmsssessesssssssssssssssssessssssssssssssssssssesssssssssssssnnns 5
CONTROL OF DIRECTORIES .ccccvvvueaeaeereeeeseessssssaeesssssssesssssssasssessssssssssssssasssssssssssssssssssssssssssssessens 6

FILE SPECIFICATIONS ON REM:: oovvvvceeeuosmaaaaessssssssssssssssssaesesssssssssesssssssssssssssssssssssssssssssessssssssseees 6
SAFE POINTER ARITHMETIC ..eeiiiiiee et 6
OPL APPLICATIONS (OPAS) ...ttt e e ettt e e e e e e e e e eeeeanannes 7
OPAS ON THE SERIES 5 ...oitoireirieneiaseeiseiseesess st 7
DEFINING AN OPA ..cooooiiereeeeeeeeessssssa e ssssssssssssssse s sssssssssss s ssssssssss e ssssss e 7
RUNNING THE OPA ..ot eveeeeessssssma s ssssssssssssss s ssssssssse s sssssssssss s sssssssss e 9
HOW THE SERIES 5 TALKS TO AN OPA ...cccourummmmrrrrreesseesssssmmssssessssssssssssssssssssessssssssssssnsnnsseeee 9
SYSTEM SCREEN COMPLIANCE w.....ccccvovosemaaereseseseeesssssssnssssessssssssssssssssssssssssssssssssssssnasssesssseeees 10
LAUNCHING HELP FILES occvvtuuummieerereeeeesssssssssaseesesssssssssssssssass s sssssssssssssssss s ssssssssssssnnssssssenees 11
EXAMPLE OPAS ...ovcvvecessssaaaeeessesessssssssase e sssssssssssse st 12
WHEN AN OPA CANNOT RESPONDovvvvvveeeeemmssssmmmaseesesssssssssssssssssssssseessssssssssssssssssnnssssseee 14
OPAS ON THE SERIES 3C AND SIENAcouiimimiiriieiseniseeseisesiesssisesss et ssessseseaeees 15
DEFINING AN OPA ..oooooiereeeeeeeessssss e sssesssssss s 15
RUNNING THE OPA w...ocirereeeeeeesssssaeseeseesssssssssssss s ssssssss s 16
HOW THE SERIES 3C TALKS TO AN OPAccccrrrreveceeesssssssssssssesssssssssssssssssssssesssessssssssesssssnnnnns 17
EXAMPLE OPAS1oooceeevsssaaee e sesessssssss s eesssssss e 18
WHEN AN OPA CANNOT RESPONDoovvvvvveeeesmmssmmmaaseessssssssssssssssssssss s ssssssssssssssssssssssseee 20
DESIGNING AN ICON ..ot roeveeeeeessssssasaaeeeeessesesesssssssssssss s ssesssssssssss s sssssssssssse s e 20
OPAS AND THE STATUS WINDOWcccvrvvveeessssnaaeeessssesessssssssssssssssessssss s sssssssssssnsssssseeees 21
OTHER TYPE OPTIONS 1...ocirevvveeeeessssssaaee e esssssssssssss s sssssssssssss s sssssssssssssss s sessssssessons 21
TR K S ettt ettt e et e e taa e et aa e e e tbaeeeeanaeeees 21
[J THE CALCULATOR MEMORIES w..ccvvevvvveeeeesssssssassesesessssesssssssssss s ssssssssssssssssssssssssseee 21
RUNNING A PROGRAM TWICE ... ovvvvveceeesssssssasssseeessssssssssssssssss s sssssssssssssss s ssssssseee 21

[J FOREGROUND AND BACKGROUNDcccvvveeensmsanessssssssssssssessssssssssssssessssssssssssssssssssseees 22

(] FOREGROUND AND BACKGROUND w.....cccoummirrviesmnaeeseesssnseeseesssssesssessssssesssss e 22
CACHEING PROCEDURES ON THE SERIES 3C AND SIENA ..ottt 23
CACHE SIZE ovveeevvtsmaieeeeeeeeessssss s 23
PROCEDURES IN UNLOADED MODULES w....ccvvvveeeeesssssaaeeesesssesssssssssssesessssssssssssssssssesesssseees 24
CACHE TIMINGS vvvveveevessssaaeeeeeeseessesssssss s eessssss s 24
COMPATIBILITY MODE MODULES «......cvvvceevuimmaereeseeesssssssssssesssssssssssssssssesssssssssssssseeessssssessons 24
POTENTIAL PROBLEMS IN EXISTING PROGRAMS ..ccoovvuuaaierrrrereeeeesasssssssssseesessssesesssssssssseee 25
CONTROLLING PROCEDURE CACHEINGovoveeeieeeeeeeeeeeeesssssssssesseeessssssssesssssssssss s 25
TIDYING THE CACHE .ccccvvvvumsmmaaieeeeeeeeeeeessssssssss s ssssssssssssss s ssssssessss s e 25

OPL

GETTING CACHE INDEX HEADER INFORMATION ..oaeieeiee ettt e e eeeeaaes 25
GETTING A CACHE INDEX RECORD .ttt eee e et e eaee e e eaeeanes 26
SPRITE HANDLING ON THE SERIES 3C AND SIENA .oveeeeeeeee e, 27
HOW . SPRITES WORK ..o ee e s s s s s s seeeseseseseses s seseseseseseseseseseseseeens 27
VWVHY USE SPRITES? .o e s s e s s ee s s e ee e e s e eese s 28
CREATING A SPRITE oot e e s e s e e e e s s s e s s s s s s s s s s s sesesenes 28
APPENDING A BITMAP=SET TO A SPRITE et ens 28
DIRAWING A SP RITE et e e ea e e 29
CHANGING A BITMAP=SET IN A SPRITE ..oeeeeeeeeee e e aeaeas 29
POSITIONING A SPRITE oo e e e e e e e eans 29
CLOSING A SP RITE e e e 29
SPRITE EXAMPLE .o e e e s ee e e e s e s e s e s e e e s s s s e s s s s s s e 29
SCANNING THE KEYBOARD DIRECTLY w.oveeeeee oo e eee e e e e eene e 31
1/O FUNCTIONS AND COMMANDS ..ot eae e eeaeeeaseene s 33
ERROR HANDLING «.. oot e e s s et et et e e e s s s s s esesesenas 33
FHANDLES oo e e e s oo s e e s e s e s e s s e s e s e s s e s e s s e s e e s es e s s s s e s oo e s s s 33
VAR VARIABLES <. oo e e e e 33
OPENING A FILE WITH TOOPEN <. s s s s s s s s s sesesesesesesenes 34
MODE CATEGORY T = OPEN MODE ... s s s s 35
MODE CATEGORY 2 = FILE FORMAT oo sseee s es e 35
MODE CATEGORY 3 = ACCESS FLAGS e veeeeeeeeeeeeee oo eeee e seee e es e e s es e es s s s 35
CLOSING A FILE WITH TOCLOSE oo e e s s s s s s s s s s s sesenes 36
READING A FILE WITH TOREAD «..eeeeeeeeeeeeeeeeeeeeeeee e e, 36
TEX T FILES oottt et et e e e e e e e e e e e e aans 36
BINARY FILES .o e ettt e e e e et e e e e e e e e e e e e aaaaan 36
WRITING TO A FILE oo eeeeeee e e e e s s eses e s e s e s e e e s es e seseses e 36
POSITIONING WITHIN A FILE oo 37
EXAMPLE - DISPLAYING A PLAIN TEXT FILE 1ooooeeeeeeeeeeeeeeeeeeeeeeeeeees s eseseeeseeeeeeeeeeen. 37
ASYNCHRONOUS REQUESTS AND SEMAPHORES ... 38
ASYNCHRONOUS REQUESTS eeiieeieieeeeeeeeetteeee e e e e e e e e ettt a e e e s e e e aaeaeeeeseeassnnnnnnnnnns 38
THE 1/O SEMAPHORE ... oot e et e e et e e e e e e e e e e e e e e e e aaeseaaeeeaaseanaaeeanaeaes vaeees 39
STATUS WORDS ettt ettt et et e et e e e ae et st e s e e e s easanseansaassansenesnnes 39
CANCELLING AN ASYNCHRONOUS REQUEST ..eiiieiiiiiieiiieeeeeeettteee e eeeeee e 40
WAITING FOR A PARTICULAR COMPLETION Lcetiiitieeee ettt e e e e e s eaeeanen 40
A FIRST EXAMPLE USING ASYNCHRONQOUS IO e 41
[0 WVAIT HANDLERS ..o e e s e s e s ee s seee s s oone 41
POLLING RATHER THAN WAITING .o oo es e 41
[0 POLLING ON THE SERIES 5 .o e s s s s s ss e es e 42
[POLLING ON THE SERIES 3C AND SIENA ..cocuuritmmeeonreasneesseeesessssessssesesssees s sssesesons 42
/O DEVICE HANDLING AND THE ASYNCHRONOUS REQUEST FUNCTIONS.............. 42
SOME USEFUL 1OW FUNCTIONS oo es s s s s s s s s s s sesesesesenes 46
EXAMPLE OF 1OW SCREEN FUNCTIONS ..o 47
(] ALARM EXAMPLE = TOC TO ALM: 1veoeeeeeeeeeeeeeeeeeeeeee e, 50
L] DIALLING EXAMPLE - TOW TO SND: o.eeeeeeeeeeeeeeeeeeeseeeee s ees e s s s s e s seses s 51

(ADVANCED TOPICS ‘

OPL

RECORDING AND PLAYING SOUNDS ON THE SERIES 3C AND SIENA 51
SOUND FILE STRUCTURE «...cccouuerveesmaareeessaesseesssasesessssssssssssaessssssssessssssssssssessssssessssnsssesssnnsseees 51
HOW TO RECORD AND PLAY SOUNDSccvuiiiminrineieineieenseessessesseeseie e seesens 52
ALARMS ..ottt eeeesse s e 53
EXAMPLE OF RECORDING ..ottt 54
[] SERIES 3C AND SIENA OPL DATABASE INFORMATIONcoccoovvviueiinieieainnn, 54
EXAMPLE ettt 55
SERIES 3C AND SIENA DYL HANDLING ...t 56
VAR ARGUMENTS ...oocoeaireetssaesesssaesssssssssssssseessesssseesessssessssss e ssss st sessssessassssns e 56
LOADING A DYL ceorotrveeouaaeeeessmaseessssasssssssesssssssaesssesssessssss s sssssssssssssesssssssssssesssssssesessesssnans 56
UNLOADING A DYL wccoruirveermaareeesaaesssssssssssssssesssssssaesssssssesssessssssssssssssssssssssssssssssssssssness oo 56
LINKING A DYL wcecoouerveeesmaseeesssasesesssaeesssssssssssssssesssesssseessessssesssssssessssssssssssssssssssssssessssesssssnnns 57
FINDING A CATEGORY HANDLE GIVEN ITS NAME w.....ccuuurrviemmmnreesssanseesssmnssssssssssssssessessssnens 57
CONVERTING A CATEGORY NUMBER TO A HANDLEccouuurveemmmareeemmareeessasesesssesssssssnessssenns 57
CREATING AN OBJECT BY CATEGORY NUMBER ...couucvvvemmarreermmanensssmassssssasessssssnsssssssnesssssssneeee 57
CREATING AN OBJECT BY CATEGORY HANDLE w....ccouuerveermmareeesssarssessnesssssssesssssesssssssssssessnns 57
SENDING A MESSAGE TO AN OBJECT ...couuurvuermareeesmaressssasesssssessssssssssssassssssaesssssssssssssessseens 57
PROTECTED MESSAGE SENDING w...couuivveermmareeessanessessssesssssssesssssssaesssssssesssssssnesssssssssssssssnseees 57
PROTECTED MESSAGE SENDING (RETURNS ZERO ON SUCCESS) ..uuecrveeerrmarreeeesmmereeessannnees 58
DYNAMIC MEMORY ALLOCATION ...ciiiiiiiiiiiiiiiiiiiie e 58
MAXIMUM DATA SIZE IN A PROCEDUREccouuriviomareeemsaesesssnesssssnssssssssssssssessssssessssssessseeos 58
SERIES 5 32-BIT ADDRESSING w..ccuvuiiuiiieireireiseiscieieissiesiesse st 58
PORTING SERIES 3C PROGRAMS TO THE SERIES 5 w.cccvveeeeuuammrreeeeesssmnnnsesesssssanesessssesssssnneneee 59
PORTING SERIES 3C PROGRAMS TO THE SERIES 5 WITHOUT ENFORCING THE 64K LIMIT 60
OVERVIEW OF MEMORY USAGEcccuuuurriemmmnreeasaessessseeessssssesssesssesssesssssssessssssssssssssesssnns 60

THE HEAP ALLOCATOR ...couueivveemmaneeeasaaessessssessessseessessssesssessssessesssessessse s sesssssesssssnas 61
THE HEAP STRUCTURE w..couuecveueraaeeeeessasneesssaeesessseessesssssssssssseessssssessesssssesssesssessesssssssesssnens 61
GROWING AND SHRINKING THE HEAPcvvveeommaarreeeesssmeesesessssansesessessssaesssssessssessesssesssnns 61
LOST CELLS .ooteeeeeeaeeeessaseseessseseesseessessse s sess st 61
INTERNAL FRAGMENTATION _..ocoecvveereaeeeassaneeesseeseessseessssssessesssesssssssessesssesssesssessssssnssssssnnns 62

THE OPL RUNTIME INTERPRETER AND THE HEAPcocoumnnrrreeeesmmmannennsesesssssssseessssssssssssseee 62
WARNING - PEEKING/POKING THE CELL w.ccvvveuueerveeernaeneeesseseeessaeesssssseeesessssesessssssssseesssnnns 63
REASONS FOR USING THE HEAP ALLOCATORcouuuurveeemmmmeneeessssanesesssssasesssesssaessssssssnssssseens 63
USING THE HEAP ALLOCATORvuiutiniiiiineieieistse sttt 63
[J ALLOC AND ASSOCIATED HEAP KEYWORDS ...covucvvvemmanreeessmnressssassssssnaesessssnsssssssaessssssneees 63
ALLOCATING A CELL w.ooteiviieraireiemmaeeeessesesseeseseesesssessssasssessesssessessssesesssessesssessessssssessss 64
FREEING AN ALLOCATED CELL w..couuuireeeemaanreeessaneseesssneessessssesssesssssesssssssessessssesssesssssessesssenns 64
CHANGING A CELL'S SIZE .ootveivveermmaceeeemaeesesssseessesssseessessssesssesssessssesssessssessseessessssssseessen oo 64
INSERTING OR DELETING DATA IN CELL w..cccuuuarreeeemmaareeeessanesssssssseessessssssssssssssasssssssssnesssseenns 64
FINDING OUT THE CELL LENGTH ..oeeouuireeeermaneeeeseeeeesssseeseesssseesssssssesssesssseseesssseessesssneee 64
EXAMPLE USING THE ALLOCATOR ...cooiuiiniiieiaiseiseise e 64
INDEX e 66

CADVANCED TOPICS ‘

OPL

PROGRAMS, MODULES, PROCEDURES

PROGRAMS USING MORE THAN ONE MODULE

Program is the more general word for the “finished product” - a set of procedures which can be run. A program
may consist of one module containing one or more procedures:

MODULE1

PROC example:

ENDP

It may also consist of a number of modules containing various procedures:

MODULE1 First module
PROC example:
ULE2 Second module
ENDP
—_C second:
PROC two:
T~ Procedures in the
> first module
ENDP
program

A procedure in one module can call procedures in another module, provided this module has been loaded with
the LOADM command. LOADM needs the filename of the module to load.

For example, if an OPL moduMAIN has these two procedures:

PROC main:
LOADM “library”
pthis: REM run pthis: in this module
pother: REM run pother: in “library”

PRINT “Finished”

(ADVANCED TOPICS ‘

OPL

PAUSE 40
UNLOADM *“library”
ENDP

PROC pthis:
PRINT “Running pthis:”
PRINT *“in this module”
PAUSE 40

ENDP

and a module callediBRARY has this one:

PROC pother:
PRINT “Running pother:”
PRINT “in module called LIBRARY”

PAUSE 40
ENDP
then runningVAIN would displayRunning pthis: andin this module ; then displayRunning
pother: andin module called LIBRARY ; and then displayrinished

You would usually only need to load other modules when developing large OPL programs.

[] You can use LOADM up to seven times, to load up to seven modules.

[] You can use LOADM up to three times, to load up to three modules.

If you want to load any further modules, you must first unload one of those currently loaded, by using
UNLOADM with the filename. To keep your program tidy, you should UNLOADM a module as soon as you
have finished using it.

@ If there is an error in the running program, you will only be positioned in the Program editor at the place
where the error occurred if you were editing the module concerned (and you ran the program from there).

In spite of its name, LOADM does not “load” the whole of another module into memory. Instead, it just loads a
block of data stored in the module which lists the names of the procedures which it contains. If such a procedure
is then called, the procedure will be searched for, copied from file into memory and the procedure will then be
run.

The modules are searched through in the order that they were loaded, with the module loaded last searched
through lastYou may make considerable improvements in speed if you keep as few modules as possible
loaded at a time (so avoiding a long search for each procedure) and if you load the modules with the most
commonly called procedures first.

[] onthe Series 5, procedures are automatically cached.

[] onthe Series 3c, without procedure cacheing, procedures are loaded from file whenever they are called,
and discarded when they return. This is true even when procedures are all in one module. (With more than
one module, LOADM simply loads a map listing procedure names and their positions in the module file so
that they can be loaded fairly efficiently. It does not load procedures into memory.)

If a well-designed program calls procedures regularly, you can speed it up by cacheing procedures. This
keeps the code for a procedure loaded in memory after it returns, so that if it is called again there is no

(Abvancep Torpics [2)

OPL

need to fetch it from file again. The CACHE command takes two arguments the initial size of the cache
and the maximum size (both in bytes). These can be up to 32,767 bytes. The minimum in both cases is
2000 bytes.

For a small program, you might uSACHE 2000,2000 at the start of the program. Up to 2000 bytes of
procedure code will be cached. If the cache fills up, and a procedure is called which is not in the cache,
space will be made for it in the cache by removing other procedures from it.

For a much larger program, you might @&&CHE 10000,10000 . You may wish to change the settings
and find the smallest setting which produces the maximum speed improvement.

Once a cache has been crea@CHE OFFprevents further cacheing, although the cache is still searched
when calling subsequent proceduré&CHE ONmay then be used to re-enable cacheing.

Procedures can be called using a string expression for the procedure name@sdgmlol, optionally
followed by a character to show what type of value is returned for exa¥bfdean integer. Follow this with
the string expression in brackets. You can use upper or lower case characters.

Here are examples showing the four types of value which can be returned:

i% = @%(name$):(parameters) for integer

& = @&(name$):(parameters) for long integer

s$ = @$(name$):(parameters) for string

f = @(name$):(parameters) for floating-point

So, for exampletest$:(1.0,2) and@$(“test”):(1.0,2) are equivalent.

Note that the string expression does not itself include a symbol for theXtyge($).

You may find this useful if, in a more complex program, you want to “work out” the name of a procedure to call
at a particular point. The section on ‘Friendlier interaction’ in the ‘GUIl.pdf’ document includes an example
program which uses this method.

On the Series 3c the Siena and the Series 5, the internal memory and disks (memory disks on the Series 5; SSDs

on the Series 3c) use a DOS-compatible directory structure, the same as that used on disks on PCs. However,
the two machines differ quite considerably in this area as described below.

To specify a file completely, the Series 5 uselsige (or devicg, folder andfilename

e The drive is the area on the Series 5 where the file is kept. This can be C: (internal disk), D: (memory disk
drive) E,..., Y: or Z: (ROM).

e Every drive has onmot folder, usually written as a backslash (\). This can “contain” files and/or other
folders, each of which can contain more files and/or more folders. When you have “folders in folders” like
this, they’re often calledubfoldersTheir names show where they are. For example, the root folder (\)
could contain a folder called \JO, which might in turn contain a folder called \JO\BACKUP, which might
contain some files.

(Abvancep Torpics [8)

OPL

* Filenames are composed of up to 256 characters (but see below), optionally followfdd bytansion
consisting of a dot and from one to three characters. A filename may not begin with a back or forward slash
(\ or /) or a colon (:). Any trailing zeros on the filename are stripped.
The Series 5 filing system does not treat extensions as a special component of a filename except when
parsing (i.e. for PARSE$) where the extension is treated as on the Series 3c (see below). So while
myfile. on the Series 3c meant the sammgfle , on the Series 5 the dot is actually part of the name.
You can also use long filenames with embedded spaces and any number of doRBLikéser Guide
or Very.long.filename

To specify a file completely, you add the three parts together. The folder part must end with a backslash. So an
OPL module namedEST, in a folder calledJO in the Series 5 internal memory can be specified as

C:\JO\TEST . If this file were in theJO\BACKUP folder, it would be completely specified as
C:\JO\BACKUP\TEST . If it were in the root folder, you would specify it@3TEST .

A full file specification may be up to 255 characters long for OPL.

In OPL, as in other applications, the files are kept on the drive and in the folder you specify.

OPL commands which specify a filename, such as OPEN, CREATE, gLOADBIT and so on, can also use any or
all of the other parts that make up a full file specification. (Normally, the only other part you might use is the
drive name, if the file were on a memory disk.) So for exan@PREN “C:\ADDR.TXT” tries to open a file
calledADDR.TXTin the root folder of the internal disk.

You can use the PARSES$ function if you need to build up complex filenames. See the ‘Alphabetic Listing’
section of the ‘Glossary.pdf’ document for more details of PARSES.

The current folder for all commands is alwa@y$ unless it has been changed by the command SETPATH.

Hence any use of a keyword which takes a filename as an argument will only look in the current folder and so if
this is other thae:\ , it should be specified either by SETPATH or by including it in the filename. For

example, to check whether the fileograml in the directoryD:\MyPrograms\ exists, either

SETPATH “d:\MyPrograms\”

IF EXISTS (“Programl”)

or

IF EXISTS (“d:\MyPrograms\Program1”)

Use the MKDIR command to make a new folder. For exanMi#DIR “C:\MINE\TEMP” creates a
C:\MINE\TEMP folder, also creatin@:\MINE if it is not already there. An error is raised if the chosen folder
exists already. USERAP MKDIRto avoid this.

SETPATH sets the current folder for file access - for exang#d,PATH “C:\DOCUMENTS". LOADM
continues to use the folder of the running program, but all other file access will be to the newly specified folder.

Use RMDIR to remove a folder - for exampRMDIR “C:\MINE” removes thMINE folder onC:. A ‘Does
not exist’ error is raised if the folder does not exist. URAP RMDIRto avoid this. AFile is in use’ error will
result if you try to remove a folder which contains open files.

(AbvANCED ToPICS [4)

OPL

S Note that any mention of SSDs in this section refers to the Series 3c only. The Siena does not have an
SSD drive. Other discussion refers to both machines as usual.

The Series 3c hides the complexities of the directory structure. You have only to supply a filename, and to say
whereabouts a file is stored - internally, on an SSD or on another computer to which the Series 3c is linked.

In fact, in order to specify a file completely, the Series 3c uséia@systemdrive (or device, directoryand
filename

e The filing system usually specifies the computer, and is usually LOC:: (‘local’ the Series 3c) or REM::
(‘remote’ an attached computer). This is always three letters and two colons.

e The drive is the area on that computer where the file is kept. On the Series 3c this can be M: (internal disk),
A: (left SSD drive) or B: (right SSD drive).

» Every drive has onmot directory usually written as a backslash (\). This can “contain” files and/or other
directories, each of which can contain more files and/or more directories. When you have “directories in
directories” like this, they're often calledibdirectoriesTheir names show where they are. For example,
the root directory (\) could contain a directory called \JO, which might in turn contain a directory called
\JO\BACKUP, which might contain some files.

e Filenames are composed of one to eight letters and/or numbers, optionally followgie exi@nsion
comprised of a dot and from one to three letters/numbers. File extensions are by convention used to group
different types of files. The Series 3c uses file extensions in this way, but hides this from you.

To specify a file completely, you add the four parts together. The directory part must end with a backslash. So
an OPL module nam€eEEST, in a directory callefJO in the Series 3c internal memory can be specified as
LOC::M:\JO\TEST.OPL . If this file were in thaJO\BACKUP directory, it would be completely specified as
LOC::M:\JO\BACKUP\TEST.OPL . If it were in the root directory, you would specify it as
LOC::M:\TEST.OPL .

A full file specification may be up to 128 characters long.

In OPL, unless you say otherwise, files are kept on the Seri¢sO&e:1(), in the internal memoryM:). The
directories and file extensions used are:

Type of file Directory File extension
OPL modules \OPL .OPL
translated modules \OPO .OPO

data files \OPD .ODB

bitmaps \OPD .PIC

OPL commands which specify a filename, such as OPEN, CREATE, gLOADBIT and so on, can also use any or
all of the other parts that make up a full file specification. (Normally, the only other part you might use is the
drive name, if the file were on an SSD.) So for exampREN “REM::C:\ADDR.TXT” ... tries to open a data

file calledADDR.TXTon the root directory of a hard di€k on an attached PC.

(AbvaNnceD Torpics [5)

OPL

You can use the PARSES$ function if you need to build up complex filenames. See the ‘Alphabetic Listing’
section of the ‘Glossary.pdf’ document for more details of PARSES.

Unless you have a good reason, though, it's best not to change directories or file extensions for files on the
Series 3c. You can lose information this way, unless you're careful.

Use the MKDIR command to make a new directory. For exanf(&@IR “M:\MINE\TEMP” creates a
MA\MINE\TEMP directory, also creatingl:\MINE if it is not already there. An error is raised if the chosen
directory exists already - u§&RAP MKDIRto avoid this.

SETPATH sets the current directory for file access - for exarl@PATH “A:\DOCS” . LOADM continues
to use the directory of the running program, but all other file access will be to the new directory instead of
\OPD.

Use RMDIR to remove a directory - for examgRMDIR “M:\MINE” removes théVIINE directory orM:\ .
An error is raised if the directory does not exist TRAP RMDIRto avoid this.

You can only remove empty directories.

You should not assume that remote file systems use DOS-like file specifications for example, an Apple
Macintosh specification idisk:folder:folder:filename . You can only assume that there will be four
parts - disk/device, path, filename and (possibly null) extension. PARSE$, however, will always build up or
break down REM:: file specifications correctly.

[] Note that on the Series 5, if you are using 32-bit addressing, as will be the case by default (see the ‘32-bit

addressing’ section later in this document), you should use ordinary long integer arithmetic andathould
use UADD and USUB.

However,on the Series 3c and Siena or if you have used SETFLAGS on the Series 5 to enforce the 64K
memory limit, whenever you wish to add or subtract something from an integer which is an address of
something (or a pointer to something) you should use UADD and USUB. If you do not, you will risk an ‘Integer
overflow’ error.

An address can be any value from 0 to 65535. An integer variable can hold the full range of addresses, but treats
those values from 32768 to 65535 as if they were -32768 to -1. If your addition or subtraction would convert an
address in the 0-32767 range to one in the 32768-65535 range, or vice versa, this would cause an ‘Integer
overflow'.

UADD and USUB treat integers as if they were unsigned, i.e. as if they really held a value from 0 to 65535.

For example, to add 1 to the address of a text string (in order to skip over its leading byte count and point to the
first character in the string), u#é=UADD(ADDR(a$),1) , noti%=ADDR(a$)+1 .

USUB works in a similar way, subtracting the second integer value from the first integer, in unsigned fashion for
example USUB(ADDR(c%),3) .

@ USUB(x%,y%) has the same effect @&DD(x%,-y%) .

(AbvanceD Torics [6)

OPL

You can make an OPL program appear as an icon in the system screen, and behave like the other icons there, by
converting it into arOPL application or OPA The support for OPAs on the Series 5 is changed and extended
from that of the Series 3¢ and Siena. The following two sections deal separately with these systems.

There are two settings for OPAs which are set using the FLAGS command (similar to TYPE on the Series 3c):

e FLAGS 1is used if your application can create files. It will then be included in the list of applications
offered when the user creates a new file from the System screen (like Program, Word etc.).

* FLAGS 2 prevents the application from appearing in the Extras bar in the System screen. It is very unusual
to have this flag set.

Once created, OPAs may be used in the same way as the built in Series 5 applications: new document files may
be created from the System screen using ‘New File’ if the flag 1 is set and/or from the Extras bar if the flag 2 is
not set. Existing files may be opened by selecting them on the System screen as usual. You can stop a running
OPA by using the Task list.

To make an OPA, your OPL file shoudeégin with the APP keyword, followed by a name for the OPA in the
machine’s default language and its UID. The nhame may be up to 250 characters. (Note that it does not have
qguote marks.) If the CAPTION command is used, however, this default name will be discarded (see below).

The UID specifies the UID of the application. For applications that are to be distributed, UIDs are reserved by
contacting Psion. These official UIDs are guaranteed to be unique to the application and have values of &10000000
and above. To obtain a reserved UID you should contact Psion Software in one of the following ways:

e-mail touid_sw@software.psion.com

or use the EPOC World web sitetp://www.software.psion.com/EPOCWorld/

or fax to+44-171-724-4048, attn UID Allocations

or write toUID Allocations, Psion Software plc, 19 Harcourt St, London W1H 1DT, England

For applications developed for personal use there is no need to reserve official UIDs, and any UID between
&01000000 and &Offfffff may be selected. However, if the UIDs of two different applications did clash, then either
your application’s documents will have the wrong icon and selecting these will run the other application, or the
other application’s documents will seem to belong to your application.

The APP line may be followed by any or all of the keywords CAPTION, ICON and FLAGS. Finally, use
ENDA, and then the first procedure may begin as in a normal OPL file. Here is an example of how an OPA
might start:

APP Expenses,&20000000 REM ! Should be a reserved UID !l
FLAGS 1
ICON *“icon.mbm”
CAPTION “Expenses”,1 REM English name
CAPTION “Expenses”,10 REM American name
ENDA

(Abvancep Torics [)

OPL

Here is another example:

APP Picture,&30000000 REM !l Should be a reserved UID !l
FLAGS 2
ICON “picicon.mbm”

ENDA

FLAGS takes an integer argument of 1 or 2. The meanings of these are outlined above. If you don’t specify the
flags, none are set.

ICON gives the name ofraulti-bitmap file(MBM), also known as aBPOC Picture file which contains the

icons for an OPL application. These icons are used on the Extras bar and for the application’s documents on the
System screen. The multi-bitmap file can contain up to three bitmaps of sk 32<32 and 4848 pixels
respectivelyput each must be paired with a maskEach bitmap should be followed by its mask in the multi-
bitmap file, so that bitmaps and masks occur alternately. The pixels which are set in the mask specify pixels in
the bitmap which are to be used. Pixels which are clear in the mask specify pixels that are not to be used from
the bitmap, allowing the background to be displayed in these pixels. Only pixels which are set in the mask are
drawn in the final icon.

The different sizes of bitmaps are used for the different zoom levels in the System screen. The sizes are read
from the MBM and the most suitable size is zoomed if the exact sizes required are not provided or if some are
missing.

You can use ICON more than once within the APP...ENDA construct. The translator only insists that all icons
are paired with a mask of the same size in the final ICON list. This allows you to use MBMs containing just one
bitmap, as produced by the Sketch application. Icons may also be created on a PC (if the appropriate tools are
available), or of course by another OPL program or application.

CAPTION specifies an applicationfgiblic name(or caption) for a particular language, which is the name

which will appear below its icon on the Extras bar and in the list of ‘Programs’ in the ‘New File’ dialog

(assuming the setting of FLAGS allows these) when that is the language used by the machine. This name is also
used as the default document name for documents launched using the Extras bar. The maximum length of the
caption is 255 characters. However, note that a caption no longer than around 8 letters will look best on the
Extras bar. If any CAPTION statement is included in the APP...ENDA structure, then the default caption
provided by the APP declaration will be discarded. Therefore as many statements of CAPTION as are necessary
to cover all the languages required, including the language of the machine on which the application is originally
developed, should be used. The constants for the language codes are supplied in Const.oph. See the ‘Calling
Procedures’ section of the ‘Basics.pdf’ document for details of how to use this file and Appendix E in the
‘Appends.pdf’ document for a listing of it.

On creation of an application, a folder specifically for the application is also created. For example, if the OPA
has the nam@&ppXxx the folder created will be&System\Apps\AppXxx\ . The APP file itself (the

translated OPL module) and tapplication information fil§ AIF) which contains three icon and mask pairs and
the application caption and flags, are created in this folder. For example, the Alfpiéxx.app would be
\System\Apps\AppXxx\AppXxx.aif . The AIF file will be generated based on all the information
contained in the APP...ENDA construct, but if any information is missing defaults will be used. These are:

e for ICON: the default (question mark) icons
o for CAPTION: the caption specified in the APP declaration
e for FLAGS: the default value of 0.

@ The arguments to any of the keywords between APP and ENDA must be constants and not expressions.

(AbvanceD Torpics [8)

OPL

Once you've successfully translated the OPL file, the applications icon will automatically appear on the Extras
bar and/or on the ‘Program’ list in the ‘New File’ dialog (as specified by the FLAGS setting). The new
documents of the application may then be created and existing ones opened as with other built in Series 5
applications.

The first thing a file-based OPA should do is to get the name of the file to use, and check whether it is meant to
create it or open iICMD$(2) returns the full name of the file to us&MD$(3) returns “C” for “Create”, “O”
for “Open” or “R” for “Run”.

All document-based OPAs should handle all of these cases; for example, if a “Create” fails because the file
exists already, or an “Open” fails because it does not, OPL raises the error, and the OPA should take suitable
action. Note however, that in general the System screen will not allow such events to occur and therefore they
are unlikely to happen.

“R” means that your application has been run from the OPL Program editor or has been selected via the
application’s icon on the Extras bar, and not by the selection or creation of one of its documents from the system
screen. A default filename, including path, is passe€2NiD$(2) . When “R” is passed, an application should
always try to open the last-used document. This is the document that was in use when the application was last
closed,not the document that was most recently opened. The name of this document should be stixgd in a

file with the same name and in the same folder as your application. So for exapgXex.app would have

NI file \System\Apps\AppXxx\AppXxx.ini . If the.INI file does not exist or cannot be opened for

any reason, or if the document listed there no longer exists, you should create the document named in
CMD$(2) . CMD$(2) is a default name provided by the System based on your application’s caption. If the

NI file is corrupt it should be deleted before going on to creM®3$(2) . No error message should be

displayed in this case.

Constants for the array indices of CMD$ and the return valuedMaf$(3) are supplied in Const.oph. See the
‘Calling Procedures’ section of the ‘Basics.pdf’ document for details of how to use this file and Appendix E in
the ‘Appends.pdf’ document for a listing of it.

When the Series 5 wants an OPA to exit or to switch files, it sen®&yigtam message the form of an event.
For example, this would happen if the ‘Close file’ option in the Task list were used to stop a running OPA.

TESTEVENT and GETEVENT32 (synchronous) and GETEVENTA32 (asynchronous) check for certain events,
including both keypresses and System messages. All types offDBAIse these keywords to check lhath

keypresses and System messages; keyboard commands such as GET, KEY and KEYA cause other events to be
discarded

GETEVENT32 waits for an event whereas TESTEVENT simply checks whether an event has occurred without
getting it. If TESTEVENT returns non-zero, an event has occurred, and can be read with GETEVENT32.
However, it is recommended that you use either GETEVENT32 or GETEVENTA32 without TESTEVENT as
TESTEVENT may use a lot of power, especially when used in a loag will often be the case.

GETEVENT32 may be used if you only wish to pick up window server events, but otherwise you should use the
asynchronous GETEVENTA32. TESTEVENT should generally only be used when polling while doing
something else in background.

GETEVENT32 and GETEVENTAZ32 both take one argument: the name of a long integer array, for example,
GETEVENT32 ev&() . The array should contain at least 16 long integers.

For example, if the event is a keypr@ss(1) AND &400) =0 and,
ev&(1l) = keycode (as for GET)

ev&(2) =time stamp (gives the time of the keypress)

(Abvancep Torpics [9)

OPL

ev&(3) = scan code (locates the key on the keyboard)
ev&(4) = modifier code (e.g. Shift, Control)

ev&(5) =repeat. Note that this is strictly the repeat value, i.e. if there is only one keypress, then the value of
ev&(5) isO0.

For non-key eventg@ev&(1) AND &400) will be non-zero. On the Series 5, these inclpoiater events

(pen events). For an application, it may be suitable to filter out certain pointer events. This may be done using
the POINTERFILTER command. POINTERFILTER takes two arguments: a filter and a mask. Each of the bits
in these two arguments represents a certain pointer event, allowing a flag to be set to say whether that event
should be filtered out. The bits which are set in the mask specify bits in the filter which are to be used. Bits
which are clear in the mask specify bits that are not to be used from the filter. This makes it possible to filter out
some pointer events, filter back in some others and leave the settings of some alone all in one call to
POINTERFILTER. To set or clear flags you would set and clear them in the filter and set all the flags that
require changing in the mask. To leave some bits in the filter alone just don’t set the bits in the mask. See the
‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for more details of POINTERFILTER and the
values returned tev&() by GETEVENT32 and GETEVENTA32.

If the event is a System message to change files oreydi{1)=&404 . You should then use GETCMD$ to
find the action required.

GETCMDS$ returns a string, whose first character is “C”, “O” or “X".

You can only call GETCMD$ once for each event. You should do so as soon as possible after reading the
event.Assign the value returned by GETCMDS$ to a string variable so that you can extract its components.

If you havec$=GETCMD$the first character, which you can extract iiBEFT$(c$,1) , has the following
meaning:

“C” - close the current document, and create the specified new file.

“O” - close the current document, and open the specified existing file.

“X” - save the name of the current document (if any) taltie file, close the current document and quit the
OPA.

Again withc$=GETCMD$MID$(c$,2,255) is the easiest way to extract the filename.

@ Note that events are ignored while you are using keywords which pause the execution of the program GET,

GETS$, EDIT, INPUT, PAUSE, MENU and DIALOG. If you need to use these keywordsQGK ON/
LOCK OFF (described later) around them to prevent the System screen from sending messages.

A well-behaved Series 5 application should obey the following important guidelines:

e All applications should respond in the standard way to the initial command-line and to any System screen
messages to switch files. See the ‘How the Series 5 talks to an OPA’ section above.

» All applications should support a toolbar. Toolbar.opo is supplied in the ROM and provides the set of
procedures required for this support. See the ‘Friendlier Interaction’ section of the ‘GUI.pdf’ document.

* All Series 5 applications should save non-document files (external files) to their soapglliedtion
directory. For an application called AppXxx, the application directory is \System\Apps\AppXxx\. This is
also the directory where the application itself is saved.

You can find out the full file specification of external files by using PARSES$. For example,
p$=PARSES$(“NEW",LEFT$(CMD$(1),LEN(CMD$(1)-4),x%())

(AbvaNCcED ToPICS [10)

OPL

CMD$(1) gives the device and the path of the OPL application and the name of the file.

By default the system screen hides the System folder and its subfolders. Use the ‘Preferences’ option in the
‘Tools’ menu (Ctrl+K) in the System screen and check the checkboxes for both ‘Show hidden files’ and
‘Show ‘System’ folder’ to show all applications and their files.

e The FLAGS keyword in the APP...ENDA construct should have the value 1 if the application supports
documentga file that will run your application when selected from the System screen). Without this flag the
application will not be listed when the user chooses to create a new file from the System screen (see sections
above).

* You should set ESCAPE OFF so that it is impossible for the user to stop the application running by hitting
Ctrl+Esc.

It is possible to write your own Help for your own application, which should be created in the Data application.
The file should be similar to the built-in help, using two labels only for each entry to give a title and the
explanation itself. The file should be stored in the application’s folder and must have the filename extension
.hlp . The procedure RUNAPP&: in System OPX (see the ‘OPX.pdf’ document for more details) may then be
used to launch Data and open the application help file. For example, if you want to run a help file called
Myapp.hlp , the help file for your own application call&tiyapp, you should use:

drv$=LEFT$(CMD$(1),2)
RUNAPP&:(“Data”,drv$+\System\Apps\Myapp\Myapp.hlp”,“”,0)

You should make it possible for users of your application to launch your help file from the application’s menus.
Following the Series 5 style guide, the ‘Help’ item should appear on the ‘Tools’ menu at the bottom of the
section above ‘Infrared’, so it will be followed by a separating line. The shortcut key should be Ctrl+Shift+H.

The example below shows how to bring the custom Help to foreground when the user chooses ‘Go back’ and
then chooses custom Help again, catering for the possibility that the user may also have exited Help. The
example also shows how an application should end the custom help task, if any, on exit.

If custom help has been launched, the global HelpThread& will be non-zero. It is possible though that the user
has exited custom Help either before or after returning to the application, without the application’s knowledge.
In this case SETFOREGROUNDBYTHREAD&:(HelpThread&,0) will raise an error because the thread doesn’t
exist. ONERR noHelpThread will then cause control to pass to the RUNAPP&: to start a new Help thread
running.

Similarly, calling ENDTASK&:(HelpThread&,0) raises an error if the thread no longer exists, so error handling
should be used in this case simply to ignore the error.

SETFOREGROUNDBYTHREAD&: and ENDTASK&: are supplied by System.opx as declared in System.oxh
INCLUDE “System.oxh”

PROC Help:
IF EXIST (Helpfile$)
IF HelpThread&<>0

ONERR noHelpThread REM go to noHelpThread if user exited Help
SETFOREGROUNDBYTHREAD&:(HelpThread&,0)
ELSE
noHelpThread::
ONERR OFF

(ADvANCED ToOPICS [1D)

OPL

HelpThread&=RUNAPP&:(“Data”,Helpfile$,”,0)
ENDIF
ENDIF
ENDP

and in

PROC Exit:
IF HelpThread&<>0
ONERR noHelpThread REM go to noHelpThread if user exited Help
ENDTASK&:(HelpThread&,0)
ENDIF
noHelpThread::
STOP
ENDP

EXAMPLE OPAS

Here is an OPA which just prints the keys you press. It is not a document-based application (like Calc, but unlike
Word which is document-based) so it uBEAGS 0. The keyboard procedugetk&: returns the key

pressed, as with GET, but jumps to a proce@mdit: if a System message to close down is received. (OPAs

with flags set to 0 do not receive “change file” messages.)

CONST KUidAppMyApp0&=&40000000 REM !l Should be a reserved UID!!!
APP myapp0,KUidAppMyAppO&

CAPTION “Get Key”,1

ICON “myapp0.mbm”
ENDA

PROC start:
GLOBAL a&(10),k&
FONT 11,16
PRINT “Q to Quit”
PRINT “ or select ‘Close file™
PRINT “ from the Task List”
DO
k&=getk&:
PRINT CHR$(k&);
UNTIL (k& AND &ffdf)=%Q REM Quick way to do uppercase
ENDP

PROC getk&:
DO
GETEVENT32 a&()
IF a&(1)=&404
IF LEFT$(GETCMDS$,1)="X"
endit:
ENDIF
ENDIF
UNTIL a&(1)<256
RETURN a&(1)
ENDP

CADVANCED TOPICS ‘

OPL

PROC endit:
STOP
ENDP

Here is a similar document-based OPA. It does the same as the previous example, but System messages to
change files cause the procedfset: to be called. The relevant files are opened or created. A proper
application with a toolbar would calBarSetTitle: to change its title. See the ‘Friendlier Interaction’
section of the ‘GUl.pdf’ document.

CONST KUidAppMyApp1&=&50000000 REM !l Should be a reserved UID!!!
APP myappl,KUidAppMyAppl&

FLAGS 1

CAPTION “Get Key Doc”,1

ICON “myappl.mbm”
ENDA

PROC start:
GLOBAL a&(10),k&,w$(255)
FONT 11,16 :w$=CMD$(2)
fset:(CMD$(3))
PRINT “Q to Quit”
PRINT “use the Task list”
PRINT “to create/switch files”
DO
k&=getk&:
PRINT CHR$(k&);
UNTIL (k& AND &ffdf)=%Q
ENDP

PROC getk&:
LOCAL t$(1)
DO
GETEVENT32 a&()
IF a&(1)=$404
w$=GETCMD$
t$=LEFT$(W$,1)
w$=MID$(w$,2,255)
IF t$="X"
endit:
ELSEIF t$="C” OR t$="0"
TRAP CLOSE
IF ERR
GIPRINT ERR$(ERR)
CONTINUE
ENDIF
fset:(t$)
ENDIF
ENDIF
UNTIL a&(1)<256
RETURN a&(1)
ENDP

CADVANCED TOPICS ‘

OPL

PROC fset:(t$)
LOCAL pé&(6)
IF t$="C"
TRAP DELETE w$
SETDOC w$
TRAP CREATE w$,A,A$
ELSEIF t$="0O"
SETDOC w$
TRAP OPEN w$,AA$
ENDIF
IF ERR
CLS :PRINT ERR$(ERR) REM should revert to old file if possible
GET :STOP
ENDIF
ENDP

PROC endit:
STOP
ENDP

You should, as in both these examples, be precise in checking for the System message; if in future the
GETCMDS$ function were to use values other than “C”, “O” or “X”, these procedures would ignore them.

If you need to check the modifier keys for the returned keypresa&(d¢ instead of KMOD.

SETDOC called just before the creation of the file ensures that the created @lecisnaenti.e. that the file

launches its associated application when selected. The strings passed to SETDOC and CREATE (or gSAVEBIT)
should be exactly the same, otherwise a non-document file will be created. SETDOC should also be called when
opening a document to allow the System screen to display the correct document name in its task list. OPL
explicitly supports database and multi-bitmap files as documents.

To be strict, whenevarreating a file, an OPA should first use PARSES$ to find the disk and directory requested.
It should then us&RAP MKDIRto ensure that the directory exists.

The LOCK command marks an OPA as locked or unlocked. When an OPA is locké®D@ithON the
System will not send it events to change files or quit. If, for example, you attempt to close down the OPA from
the Task list, a message will appear, indicating that the OPA cannot close down at that moment.

You should us& OCK ONif your OPA uses a keyword, such as MENU, DIALOG and EDIT, which pauses the
execution of the program. You might also use it when the OPA is about to go busy for a considerable length of
time, or at any other point where a clean exit is not possible. Do not forgetlt®@@s€ OFFas soon as possible
afterwards.

An OPA is initially unlocked.

(ADvANCED ToPICS [14)

OPL

There are five different types of OPA, called type O to type 4:
e TYPE 0O (like Calc): The OPA uses no files.

* TYPE 1: Only one file is used. A type 1 OPA will look the same as a type 0. The only difference is that the
type 1 is using a file, of the same name as the OPA.

 TYPE 2 (like World): You can have more than one file, but only one can be in use (bold) at any time.
When you pick a new file to use, its name becomes bold, and the one that was previously bold reverts to
normal.What has actually happened is that the running OPA has switched filesit hasnot closed
down, and no new copy of the OPA is run.

e« TYPE 3 (like Data, Word, Agenda, Sheet): You can have more than one file, and any number may be open
(bold) at a given time.
When you select a new file, one of the running OPAs normally switches to this file, as with type 2 OPAs.
You can, however, with Shift-Enter, start a new OPA running just for this file, without a different file
exiting.

* TYPE 4 (like RunOpl): Many files can be used, and any number may be in use at a given time. When you
select a new file, a new version of the OPA is always run, to use the new file.

Types 3 and 4 allow more than one file tarbese(i.e. have their names in bold). When this hapens
separate version of the OPA runs for each bold filewith types 0, 1 and 2, only one version of the OPA can
be running at any time.

Initially, the OPA’s name appears beneath the icon. If you move onto this name and press Enter, file-based
OPAs (types 1 to 4) will use a file of this name. Types 2, 3 and 4 allow you to create lists of files below the icon
(with the ‘New file’ option). You use the file lists in the same way as the lists under the other icons in the
System screen.

You can stop a running OPA by moving the cursor onto its bold name and pressing Delete. After a ‘Confirm’
dialog, the System screen tells the OPA to stop running.

To make an OPA, your OPL file shoubeégin with the APP keyword, followed by a name for the OPA. The

name should begin with a letter, and comprise of 1 to 8 letters and/or numbers. (Note that it does not have quote
marks.) The APP line may be followed by any or all of the keywords PATH, EXT, ICON and RY&&ies

3c OPA should also add $1000 to the type if it has its own 48x48 pixel, black/grey idsee the discussion of

ICON below for details). Finally, use ENDA, and then the first procedure may begin as in a normal OPL file.

Here is an example of how an OPA might start:

APP Expenses

TYPE $1003

PATH “\EXP”

EXT “EXP”

ICON “\OPD\EXPENSES.PIC”
ENDA

(ADVANCED TOPICS [18)

OPL

Here is another example:

APP Picture
TYPE 1
ENDA

TYPE takes an integer argument from 0 to 4. The various types of OPA are outlined earlier. If you don’t specify
the type, 0 is used.

PATH gives the directory to use for this OPA's files. If you do not use this, the ngdfBI directory will be
used. The maximum length, including a fihalis 19 characters. Don’t include any drive name in this path.

EXT gives the file extension of files used by this OPA. If you do not specify.@3B is used. Note that the

files used by an OPA do not have to be data files, as the I/O commands give access to files of all kinds. EXT
does not define the file type, just the file extension to use. Howlevaimplicity’s sake, examples in this

section use data files

(PATH and EXT provide information for the System screen - they do not affect the program itself. The System
screen displays under the OPA icon all files with the specified extension in the path you have requested.)

ICON gives the name of the bitmap file to use as the icon for this OPA. If no file extension is given, .PIC is
used. If you do not use ICON, the OPA is shown on the System screen with a standard OPA icon.

As mentioned above, you should add $1000 to the argument to TYPE for a Series 3c icon. This specifies that the
icon has size 48x48 pixels (instead of 24x24 as it was on the Series 3). If the first bitmap has size 24x24, itis
ignored and the following two bitmaps must be the 48x48 black and grey icons respectively. If the first bitmap is
48x48, it is assumed to be the black icon and the grey icon must fHllBL000 is not set, a scaled up 24x24

icon will be used.The translator does not check the size of the icons. If you want to design your own icon using
an OPL program, see gSAVEBIT for details on saving both black and grey planes to a bitmap file.

é The arguments to any of the keywords between APP and ENDA must be constants and not expressions. So,
for example, you must u§e/PE $1003 instead off YPE $1000 OR 3 .

Once you've translated the OPL file, return to the System screen and use Install on the App menu to install the
OPA in the System screen. (You only need to do this once.) Once installed, file-based OPAs are shown with the
list of available files, if any are found. Otherwise, the name used after the APP keyword appears below the icon.

Note that the translated OPA is saved VARP directory. If you previously translated the module without
the APP...ENDA at the start, the old translated version will still be listed under the RunOpl icon, and should
be deleted.

The first thing a file-based OPA should do is to get the name of the file to use, and check whether it is meant to
create it or open iICMD$(2) returns the full name of the file to usgMD$(3) returns “C” for “Create” or “O”

for “Open”. All file-based OPAs (types 1 to 4) should handle both these cases; if a “Create” fails because the file
exists already, or an “Open” fails because it does not, OPL raises the error, and the OPA should take suitable
action - perhaps even just exiting.

(AbvaNCED ToPICS [16)

OPL

When the Series 3c wants an OPA to exit or to switch files, it sen@ygtam messag@ the form of an event.
This would happen if you press Delete to stop a running OPA, or select a new file for a type 2 or 3 OPA.

TESTEVENT and GETEVENT check for certain events, including both keypresses and System messages. All
types of OPAmMust use these keywords to check limth keypresses and System messages; keyboard
commands such as GET, KEY and KEYA cause other eventsdisdzeded.

GETEVENT waits for an event whereas TESTEVENT simply checks whether an event has occurred without
getting it.

If TESTEVENT returns non-zero, an event has occurred, and can be read with GETEVENT. This takes one
argument, the name of an integer array for exan@elEVENT a%(). The array should be at least 6 integers
long. (This is to allow for future upgrades you only need use the first two integers.)

If the event is a keypress:

a%(1) = keycode (as for GET)

a%(2) AND $00ff = modifier (as for KMOD)

a%(2)/256 = auto-repeat count (ignored by GET; you can ignore it too)

For non-key event&@%(1) AND $400) will be non-zero. If the event is a System message to change files or
quit, a%(1)=%$404 . You should then use GETCMDS$ to find the action required.

GETCMDS$ returns a string, whose first character is “C”, “O” or “X". If it is “C” or “O”, the rest of the string is a
filename.

You can only call GETCMD$ once for each event. You should do so as soon as possible after reading the
event.Assign the value returned by GETCMDS$ to a string variable so that you can extract its components.

If you havec$=GETCMD$the first character, which you can extract ilEFT$(c$,1) , has the following
meaning:

“C” - close down the current file, and create the specified new file.

“O” - close down the current file, and open the specified existing file.

“X" - close down the current file (if any) and quit the OPA.

Again withc$=GETCMD$MID$(c$,2,128) s the easiest way to extract the filename.

@ Note that events are ignored while you are using keywords which pause the execution of the program GET,

GETS, EDIT, INPUT, PAUSE, MENU and DIALOG. If you need to use these keyword& Q6K ON/
LOCK OFF(described later) around them to prevent the System screen from sending messages.

(AbvANCED ToPICS [17)

OPL

EXAMPLE OPAS

Here is a type 0 OPA, which just prints the keys you press. The keyboard progettdse returns the key
pressed, as with GET, but jumps to a procedurdt: if a System message to close down is received. (Type O
OPAs do not receive “change file” messages.)

getk%: does not return events with values 256 ($100) or above, as they are not simple keypresses. This
includes the non-typing keys like Menu ($100-$1FF), hot-keys ($200-$3FF), and non-key events ($400 and
above).

APP myapp0
TYPE $1000
ICON “\opd\me”

ENDA

PROC start:
GLOBAL a%(6),k%
STATUSWIN ON :FONT 11,16
PRINT “Q to Quit”
PRINT “ or press Delete in”
PRINT “ the System screen”
DO
k%=getk%:
PRINT CHR$(k%);
UNTIL (k% AND $ffdf)=%Q REM Quick way to do uppercase
ENDP

PROC getk%:
DO
GETEVENT a%()
IF a%(1)=$404
IF LEFT$(GETCMDS$,1)="X"
endit:
ENDIF
ENDIF
UNTIL a%(1)<256
RETURN a%(1)
ENDP

PROC endit:
STOP
ENDP

Here is a similar type 3 OPA. It does the same as the previous example, but System messages to change files
cause the procedufset: to be called. The relevant files are opened or created; the name of the file in use is
shown in the status window.

APP myapp3
TYPE $1003
ICON “\opd\me”

ENDA

PROC start:
GLOBAL a%(6),k%,w$(128)
STATUSWIN ON :FONT 11,16 :w$=CMD$(2)

CADVANCED TOPICS ‘

OPL

fset:(CMD$(3))
PRINT “Q to Quit”
PRINT “ or press Delete in”
PRINT “the System screen”
PRINT “ or create/swap files in”
PRINT “the System screen”
DO

k%=getk%:

PRINT CHR$(k%);
UNTIL (k% AND $ffdf)=%Q

ENDP

PROC getk%:
LOCAL t$(1)
DO
GETEVENT a%()
IF a%(1)=$404
w$=GETCMD$
t$=LEFT$(W$,1)
w$=MID$(w$,2,128)
IF t$="X"
endit:
ELSEIF t$="C” OR t$="0"
TRAP CLOSE
IF ERR
CLS :PRINT ERR$(ERR)
GET :CONTINUE
ENDIF
fset:(t$)
ENDIF
ENDIF
UNTIL a%(1)<256
RETURN a%(1)
ENDP

PROC fset:(t$)
LOCAL p%(6)
IF t$="C”"

TRAP DELETE w$ REM SYS.SCREEN DOES ANY “OVERWRITE?”

TRAP CREATE w$,A A$
ELSEIF t$="0"
TRAP OPEN w$,AA$
ENDIF
IF ERR
CLS :PRINT ERR$(ERR)
GET :STOP
ENDIF
SETNAME w$
ENDP

(ADVANCED TOPICS ‘

OPL

PROC endit:
STOP
ENDP

You should, as in both these examples, be precise in checking for the System message; if in future the
GETCMDS$ function were to use values other than “C”, “O” or “X”, these procedures would ignore them.

If you need to check the modifier keys for the returned keypresa2a& AND $00ff instead of KMOD.

SETNAME extracts the main part of the filename from any file specification (even one that is not DOS-like), in
the same way as PARSES$. Using SETNAME ensures that the correct name will be used in the file list in the
System screen. If an OPA lets you change files with its own ‘Open file’ option, it should always use SETNAME
to inform the System screen of the new file in use.

To be strict, whenevarreating a file, an OPA should first use PARSES$ to find the disk and directory requested.
It should then us&RAP MKDIRto ensure that the directory exists.

The LOCK command marks an OPA as locked or unlocked. When an OPA is locké®D@ithON the

System will not send it events to change files or quit. If, for example, you move onto the file list in the System
screen and press Delete to try to stop that running OPA, a message will appear, indicating that the OPA cannot
close down at that moment.

You should usé OCK ONif your OPA uses a keyword, such as EDIT, which pauses the execution of the
program. You might also use it when the OPA is about to go busy for a considerable length of time, or at any
other point where a clean exit is not possible. Do not forget th@&8& OFFas soon as possible afterwards.

An OPA is initially unlocked.

As discussed earlier, an OPA icon is black and grey and has size 48 by 48 pixels. The icon is stored as two
48x48 bitmaps, black followed by grey, in a bitmap file. Here is a simple example program which creates a
suitable bitmap:

PROC myicon:
gCREATE(0,0,48,48,1,1)
gBORDER $200
gAT 6,28
gPRINT “me!”
gSAVEBIT “me”

ENDP

Here the window is created with a grey plane (the sixth argument to gCREATE) gSAVEBIT automatically saves
a window with both black and grey plane to a file in the required format.

In the OPA itself use the ICON keyword, as explained previously, to give the name of the bitmap file to use
here,ICON “\opd\me”

(AbvaNCcED ToPICS [20)

OPL

If you useSTATUSWIN ON,2 to display the status window, it shows the OPA’s own icon and the name used
with the APP keywordSTATUSWIN ON,1 displays the smaller status window.

Important: The permanent status windowbishind all other OPL windows. In order to see it, you must use
FONT (or both SCREEN and gSETWIN) to reduce the size of the text and graphics windows. You should
ensure that your program does not create windows over the top of it.

You can also display a list of modes/views for use with the diamond key with DIAMINIT and position the
diamond indicator witiDIAMPOS

The name can be changed with the SETNAME command. In general, an OPA should use SETNAME whenever
it changes files, or creates a new file.

You can add any of these numbers to the value you use with TYPE:

e $8000 (-32768) stops the System screen’s ‘New file’ option from working, as for the RunOpl icon (trans-
lated OPL modules).

e $4000 (16384) stops the System screen from closing the OPA, as for the Time icon. You should not use this
without avery good reason.

e $100 (8192) causes the System screen to terminate the OPA (when Delete is pressed there) without sending
a message to the OPA to quit (“X”), as for the RunOpl icon again. This should be used only for OPAs which
have no data that could be lost by sudden termination.

For example, us@ YPE $8001 for a type 1 OPA having the first of the features above. (NotatRaE
$8000+1 would fail to translate as the translator cannot evaluate expressions for any keywords between APP
and ENDA).

The calculator memories MO to M9 are available as floating-point variables in OPL. You might use them to
allow OPL access to results from the calculator, particularly if you use OPL procedures from within the
calculator.

It's best not to use them as a substitute for declaring your own variables. Your OPL program might go wrong if
another running OPL program uses them, or if you use them yourself in the calculator.

Although you may never need to, yoan run more than one copy of the same translated OPL matitie
same time There are two ways:

e Use ‘Copy file’ in the System screen to make a new copy of the module, with a different flename. Then run
both files.

* For the Series 3c onlyrun the file as normal. Then move the highlight to under the RunOpl icon, press Tab
to show the file selector, and pick the name of the translated module again.

(ADvANCED ToOPICS [2D)

OPL

e SETFLAGS $10000 tells the Series 5 to send a “machine switch on” event to the current program, when-
ever the Series 5 switches on, even if this program is in the background. If required, use it just once at the
start of your program.

e The System OPX procedure SETFOREGROUND: brings the current program to the foreground.

e The System OPX procedure SETBACKGROUND: sends it to the background again.
Note that each of these should be followedjbfPDATEt0 ensure they take effect immediately.

@\ Note that when a program runs in the background it can stop the “automatic turn off” feature from working.
However, as soon as the program waits for a keypress or an event, with GET/GET$ or GETEVENT32,
auto-turn off can occur.

Auto-turn off can also occur if the program does a PAUSE (of 2 or more 20ths of a second), but only if the
program has used SETACTIVE from System OPX to mark the program as inactive.

See the ‘'OPX.pdf’ document for more information about System OPX procedures.

e CALL ($6c8d) tells the Series 3c to send a “machine switch on” event to the current program, whenever the
Series 3c switches on, even if this program is in the background. If required, use it just once at the start of
your program.

e CALL($198d,0,0) brings the current program to the foreground.

e CALL($198d,100,0) sends it to the background again.
Each of these should be followed ¢py PDATEt0 ensure they take effect immediately.

This example program comes to the foreground and beeps whenever you turn the Series 3c on. Be careful to
enter the CALL and GETEVENT statements exactly as shown.

PROC beepon:
LOCAL a%(6)
PRINT “Hello”
CALL($6c8d) :GUPDATE
WHILE 1
DO

GETEVENT a%()

IF a%(1)=$404 :STOP :ENDIF :REM closedown
UNTIL a%(1)=%$403 :REM machine ON
CALL($198d,0,0) :gUPDATE
BEEP 5,300 :PAUSE 10 :BEEP 5,500
CALL($198d,100,0) :gUPDATE
ENDWH

ENDP

@ Note that when a program runs in the background it can stop the “automatic turn off” feature from working.

However, as soon as the program waits for a keypress or an event, with GET/GET$ or GETEVENT, auto-
turn off can occur.

(ADvANCED ToOPICS [22)

OPL

Auto-turn off can also occur if the program does a PAUSE (of 2 or more 20ths of a second), but only if the
program has useGALL($138b) (“unmark as active”)

[] On the Series 5, procedures are automatically cacheshd the cache commands are not available on the
Series 5. Therefore, the following section is only applicable to the Series 3c and Siena.

Without procedure cacheing, procedures are loaded from file whenever they are called and discarded when they
return - LOADM simply loads a map listing procedure names and their positions in the module file so that they
can be loaded fairly efficiently. The cache handling commands provide a method for keeping the code for a
procedure loaded after it returns - it remains loaded until a procedure called later requires the space in the cache.
The strategy is then to remove the least recently used procedures, making it more likely that all the procedures
called together in a loop, for example, remain in the cache together, thus speeding up procedure calling
significantly.

Cache handling keywords allow you to:

e create a cache of a specified initial and maximum size using CACHE init%,max%. You can specify these up
to 32,767 bytes.

@ If you use hex, you can even exceed this figure, if you need toCAGHE $9000,$9000 . However,
you cannot exceed the 64k total memory limit which each Series 3c process has.

e prevent loading and removal of procedures from the cache so that a given set of procedures can be guaran-
teed to remain in the cache using CACHE OFF. Procedures already in the cache are still used when
cacheing is off. The loading and removal of procedures can subsequently be resumed using CACHE ON.

e tidy the cache by removing procedures that are no longer in use (i.e. procedures that have returned) using
CACHETIDY.

» for advanced use during program development, further keywords are provided for inspecting the contents of
the cache at any time (see CACHEHDR and CACHEREC).

Cacheing procedures is not a cure all. Care should be taken that the cache size is sufficient to load all procedures
required for a fast loop otherwise, for example, a large procedure may cause all the small ones in a loop to be
removed and equally, a small one may require the large one to be removed, so that the cache provides no benefit
at all. In fact, the overhead needed for cache management can then make your program less efficient than having
no cache at all. If the maximum cache size you can have is limited, careful@a€BE OFFshould prevent

such problems at the expense of not fitting all the procedures in the loop in the@aCitE OFFis

implemented very efficiently and calling it frequently in a loop should not cause much concern.

To guarantee that there is enough memory for a given cache size, create the cache passing that value as the
initial size usingTRAP CACHE init%,max% . TRAP ensures that if the cache creation succeeds, ERR returns
zero and otherwise the negative ‘Out of memory’ error is raised. After creation, the cache will grow as required
up to the maximum sizeax%oor until there is not enough free memory to grow it. On failure to grow the cache,
any procedures which will not fit into the existing cache, even when unused procedures are removed, are simply
loaded without using the cache and are discarded when they return.

If you want to ensure a certain minimum cache size, say 10000 bytes, but do not care how large it grows, you
could useTRAP CACHE 10000, $ffff so that the cache just grows up to the limits of memory. For a
relatively small program, you might want to load the whole program into cache by making the cache size the

(ADvVANCED TOPICS [28)

OPL

same size as the module. This will in fact be a little larger than required, unnecessarily including a procedure
name table and module file header which are not loaded into the cache. The minimum cache size is 2000 bytes,
which is used if any lower value is specified. If the maximum size specified is less than the initial size, the
maximum is set to the initial size. The maximum cache size cannot be changed once the cache has been created
and an error is returned if you attempt to do so.

é The initial cache size should ideally be large enough to hold all procedures that are to be cached simultane-

ously. There is no advantage in growing the cache from its initial size when you know that a certain mini-
mum size is needed.

When a module is unloaded, all procedures in it that are no longer in use are removed from the cache. Any
procedure that is still in use, is hidden in the cache by changing its first character to lower case; when it finally
returns, a hidden procedure is removed in the normal manner to make room for loading a new procedure when
the cache is full. Note that it is considered bad practice to unload a module containing procedures that are still
running - e.g. for a procedure to unload its own module.

Calling an empty procedure that simply returns is approximately 10 times faster with a cache. This figure was
obtained by calling such a procedure 10000 times in a loop, both with cacheing off and on, and subtracting the
time taken running an empty loop in each case.

Clearly that case is one of the best for showing off the advantages of cacheing, and there is no general formula
for calculating the speed gain. The procedures that benefit most will be those that need most module file access
relative to their size in order to load them into memory. The programmer cannot reasonably write code taking
this into account, so no further details are provided here.

The case described above does not require any procedures to be removed from the cache to make room for new
procedures when the cache is full, and removal of procedures requires a fair amount of processing by the cache
manager. If many procedures in a time-critical section of your program are loaded into the cache and not used
often before removal, the speed gain may be less than expected - a larger cache may be called for to prevent too
many removals.

It should be noted however, that even with the worst case of procedures being loaded into the cache for use just
once before removal, having a cache is often superior to having no cache. This is because the cache manager
reads module file data (required for loading the procedures into memory) in one block rather than a few bytes at
a time and it is the avoidance of excessive file access which provides the primary speed gains for cacheing.

Procedures in modules translated for the Series 3 cannot be loaded into the cache. On encountering such a
procedure, the cache manager simply loads it without using the cache and discards it when it returns. The reason
for this is that a few extra bytes of data are stored in the Series 3c modules which are needed by the cache
manager.

(ADVANCED ToOPICS [24)

OPL

It is possible that previously undiscovered bugs in existing OPL programs are brought to light simply by adding
code to use the cache.

Without cacheing, the variables in a procedure are followed immediately by the code for the procedure. Writing
beyond the variables (for example reading too many bytes into the final variable using such keywords as
gPEEKLINE or KEYA) would have written over the code itself but would have gone unnoticed unless you
happened to loop back to the corrupted code. With a cached procedure, the code no longer follows your
variables, so the corruption occurs elsewhere in memory, resulting quite probably in the program crashing.

TRAP CACHE initSize%,maxSize% creates a cache of a specified initial number of bytes, which may

grow up to the specified maximum. If the maximum is less than the initial size, the initial size becomes the
maximum. If growing the cache fails, normal loading without the cache is used. The ‘In use’ error (-9) is raised

if a cache has been created previously or the ‘Out of memory’ error (-10) on failure to create a cache of the
specified initial size - use the TRAP command if required. Procedure code and other information needed for
setting up variables are loaded into the cache when the procedure is called. If there is no space in the cache and
enough space can be regained, the least recently used procedures are removed. Otherwise the procedure is
loaded in the normal way without cacheing.

Once a cache has been crea@CHE OFFprevents further cacheing, although the cache is still searched
when calling subsequent procedul@ACHE ONmay then be used to re-enable cacheing. NoteCth@HE ON
or CACHE OFFare ignored if used befof@ACHE initSize%,maxSize%

CACHETIDY removes any procedures from the cache that have returned to their callers. This might be called
after performing a large, self-contained action in the program which required many procedures. Using
CACHETIDY will then result in speedier searching for procedures called subsequently. More importantly, it

will prevent the procedures being unloaded one at a time when the need arises - it is very efficient to remove a
set of procedures that are contiguous in the cache as is likely to be the case in this situation.

Note that a procedure which has returned is automatically removed from the cache if you unload the module it is
in, so CACHETIDY needn’t be used for such a procedure.

The CACHEHDR command is provided for advanced use and is intended for use during program development
only.

CACHEHDR ADDR(hdr%()) reads the current cache index header into the hdi#@p() which must have at
least 11 integer elements. Note that any information returned is liable to change whenever a procedure is called,
SO you cannot save these values over a procedure call.

If no cache has yet been createtidr%(10)=0 and the other data read is meaningles©therwise, the data
read is as follows:

hdr%(1) current address of the cache itself
hdr%(2) number of procedures currently cached
hdr%(3) maximum size of the cache in bytes
hdr%(4) current size of the cache in bytes
hdr%(5) number of free bytes in the cache

(ADVANCED TOPICS [26)

OPL

hdr%(6) total number of bytes in cached procedures which are freeable (i.e. not running)
hdr%(7) offset from the start of the cache index to the first free index record

hdr%(8) offset from start of cache index to most recently used procedure’s record; zero if none
hdr%(9) offset from start of cache index to least recently used procedure’s record; zero if none

hdr%(10) address of the cache index, or zero if no cache created yet
hdro%(11) non-zero if cacheing is on, and zero if it is off

The cache manager maintains an index for the cache consisting of an index header containing overall
information for the whole cache as well as one index record for each procedure cached. All offsets mentioned
above give the number of bytes from the start of the index to the procedure record specified. The index records
for cached procedures form a doubly linked list, with one list beginning with the most recently used procedure
(MRU), with offset given byhdr%(8) , and the other with the least recently used procedure (LRU) with offset
given byhdr%(9) . A further singly linked list gives the offsets to free index records. The linkage mechanism is
described in the discussion of CACHEREC below.

The CACHEREC command is provided for advanced use and is intended for use during program development
only.

CACHEREC ADDR(rec%()),offset% reads the cache index record (see the description of CACHEHDR
above) abffset% into arrayrec%() which must have at least 18 integer elemeasifset%=0 specifies

the most recently used (MRU) procedure’s record if anyadfs#t%<0 the least recently used procedure
(LRU) procedure’s record if any.

The data returned by CACHEREC is meaningless if no cache exisfg; which caseec%(17)=0) or if
there are no procedures cached ydtvhenhdr%(8)=0 as returned by CACHEHDR).

Each record gives the offset to both the more recently used and to the less recently used procedure’s record in
the linked lists, except for the MRU and the LRU procedures’ records themselves which each terminate one of
the lists with a zero offset. The first free index record (see CACHEHDR above) starts the free record list, in
which each record gives the offset of the next free record or zero offset to terminate the list. To “walk” the cache
index, you would always start by calling CACHEREC specifying either the MRU or LRU record offset, and use
the values returned to read the less or more recently used procedure’s record respectively. Note that any
information returned is liable to change whenever a procedure is called, so you cannot save these values over a
procedure call.

For the free cell list, onlyec%(1) is significant, giving the offset of the next free index record. For the records
in the lists starting with either the LRU or MRU record, the data returnezt®() is:

rec%(1) offset to less recently used procedure’s record or zero if on LRU
rec%(2) offset to more recently used procedure’s record or zero if on MRU
rec%(3) usage count zero if not running

rec%(4) offset in cache itself to descriptor for building the procedure frame
rec%(5) offset in cache itself to translated code for the procedure

rec%(6) offset in cache itself to the end of the translated code for the procedure
rec%(7) number of bytes used by the procedure in the cache itself

rec%(8-15) leading byte counted procedure name, followed by some private data

(ADvANCED ToOPICS [26)

OPL

rec%(16) address of the procedure’s leading byte counted module name
rec%(17) address of the cache index, or zero if no cache created yet
rec%(18) non-zero if cacheing is on, and zero if it is off

For example, to print the names of procedures and their sizes from MRU to LRU:

CACHEHDR ADDR(hdr%())
IF hdr%6(10)=0
PRINT “No cache created yet”
RETURN
ENDIF
IF hdr%(8)=0 REM MRU zero?
PRINT “None cached currently”
RETURN
ENDIF
rec%(1)=0 REM MRU first
DO
CACHEREC ADDR(rec%()),rec%(1) REM less recently used proc
PRINT PEEK$(ADDR(rec%(8))),rec%(7) REM name and size
UNTIL rec%(1)=0

] For Sprite handling on the Series 5, see the ‘OPX.pdf documentNote, however, that the basic idea of

sprite handling remains the same for the Series 5, and you may find some of the information given below
helpful.

OPL includes a set of keywords for handlingpaite - a user-defined black/grey/white graphics object of
variable size, displayed on the screen at a specified position.

The sprite can also tamimated- you can specify up to I8tmap-setsvhich are automatically presented in a
cycle, with the duration for each bitmap-set specified by you. Each bitmap-set may be displayed at a specifiable
offset from the sprite’s notional position.

The 13 bitmap-sets are each composed of up to six bitmaps. The set pixels in each bitmap specify one of the
following six actions: black pixels to be drawn; black pixels to be cleared; black pixels to be inverted; grey
pixels to be drawn; grey pixels to be cleared; or grey pixels to be inverted. The bitmaps in a set must have the
same size.

All the bitmaps in a set are drawn to the screen together and displayed for the specified duration, followed by the
next set, and so on.

If you do not specify that a pixel is to be drawn, cleared or inverted, the background pixel is left unchanged.

Black pixels are drawn “on top of” grey pixels, so if you clear/invert just the grey pixels in the sprite they
will be hidden under any pixels set blackSo to clear/invert pixels on a background which has both grey and
black pixels set, you need to clear/invert both black and grey pixels in the sprite.

é The pixels of one colour (black or grey) which are set in one bitmap of the bitmap-set should not overlap
with those of the same colour which are set in another bitmap in the same bitmap-set. This is because the
order in which the bitmaps are applied is undefined. So, for example, do not specify that pixel (0,0) should
have the black pixel both drawn and cleared.

(AbvaNcED ToPICS [20)

OPL

A sprite is useful for displaying something in foreground without having to worry about restoring the

background display. A sprite can also have any shape, leaving the background display all around it intact, and it
can even be hollow - only the pixels specified by you are drawn, cleared or inverted. Typically only one bitmap-
set containing two black bitmaps would be used - one for setting and one for clearing pixels.

You would not often use the sprite features in their full generality. In fact, more than one bitmap-set is needed
only for animation and it is also seldom necessary to use all the available bitmaps in a single bitmap-set.

sprld%=CREATESPRITE creates a sprite and returns the sprite ID.

APPENDSPRITE tenths%,bitmap$()
APPENDSPRITE tenths%,bitmap$(),dx%,dy%

append a single bitmap-set to a sprite. These may be called up to 13 times for each sprite. APPENDSPRITE may
be called only before the sprite is drawn, otherwise it raises antertits% gives the duration in tenths of

seconds for the bitmap-set to be displayed before going on to the next bitmap-set in the sequence. It is ignored if
there is only one bitmap-set.

bitmap$() contains the names of the six bitmap files in the set:
bitmap$(1) for setting black pixels

bitmap$(2) for clearing black pixels

bitmap$(3) for inverting black pixels

bitmap$(4) for setting grey pixels

bitmap$(5) for clearing grey pixels

bitmap$(6) for inverting grey pixels

Use™ to specify no bitmap. If" is used for all the bitmaps in the set, the sprite is left blank for the specified
duration.

The array must have at least 6 elements.

All the bitmaps in a single bitmap-set must be the same size, otherwise an ‘Invalid arguments’ error is raised on
attempting to draw the sprite. Bitmaps in different bitmap-sets may differ indsizeanddy% are the (x,y)

offsets from the sprite position (see CREATESPRITE) to the top-left of the bitmap-set with positive for right

and down. The default value of each is zero.

Sprites may use considerable amounts of memory. A sprite should generally be created, initialised and closed in
the same procedure to prevent memory fragmentation. Care should also be taken in error handling to close a
sprite that is no longer in use.

Creating or changing a sprite consisting of many bitmaps requires a lot of file access and should therefore be
avoided if very fast sprite creation is required. Once the sprite has been drawn, no further file access is
performed (even when it is animated) so the number of bitmaps is no longer important.

(ADVANCED TOPICS [28)

OPL

DRAWING A SPRITE

DRAWSPRITE x%,y%draws a sprite in the current window with top-left at pixel posifidh,y%) . The

sprite must previously have been initialised using APPENDSPRITE or the ‘Resource not open’ error (-15) is
raised. If any bitmap-set contains bitmaps with different sizes, DRAWSPRITE raises an ‘Invalid arguments’
error (-2).

CHANGING A BITMAP-SET IN A SPRITE
CHANGESPRITE index%,tenths%,var bitmap$()
CHANGESPRITE index%,tenths%,var bitmap$(),dx%,dy%

change the bitmap-set specifiedibgex% (1 for the first bitmap-set) in the sprite using the supplied bitmap
files, offsets and duration which are all used in the same way as for APPENDSPRITE.

CHANGESPRITE can be called only after DRAWSPRITE.

S Note that if all or many bitmap-sets in the sprite need changing or if each bitmap-set consists of many

bitmaps, the time required to read the bitmaps from file may be considerable, especially if fast animation is
in progress. In such circumstances, you should think about closing the sprite and creating a new one, which
will often be more efficient.

POSITIONING A SPRITE
POSSPRITE x%,y% sets the position of the sprite (t%,y%) .

CLOSING A SPRITE
CLOSESPRITE sprld% closes the sprite with IBprid% .

SPRITE EXAMPLE

The following code illustrates all the sprite handling keywords using a sprite consisting of just two bitmap-sets
each containing a single bitmap.

PROC sprite:
LOCAL bit$(6,6),sprld%
crBits: REM create bitmap files
gAT gWIDTH/2,0
gFILL gWIDTH/2,gHEIGHT,0 REM fill half of screen

sprid%=CREATESPRITE
bit$(1)="* :bit$(2)="

bit$(3)="cross” REM black cross, pixels inverted
bit$(4)="" :bit$(5)="" :bit$(6)="
APPENDSPRITE 5,bit$(),0,0 REM cross for half a second

bit$(1)=“" :bit$(2)=““ :bit$(3)=lm
bit$(4)=“" :bit$(5)=““ :bit$(6)=lm

APPENDSPRITE 5,bit$(),0,0 REM blank for half a second
DRAWSPRITE gWIDTH/2-5,gHEIGHT/2-5 REM animate the sprite
BUSY *“flash cross, c”,3 REM no offset (‘c’ for central)
GET bit$(3)="box” REM black box, pixels inverted
CHANGESPRITE 2,5,bit$(),0,0 REM in 2nd bitmap-set

BUSY “cross/box, c/c”,3 REM central/central

GET

CHANGESPRITE 2,5,bit$(),40,0 REM offset by 40 pixels right

CADVANCED TOPICS ‘

OPL

BUSY *“cross/box, c/40”,3 REM central/40

GET

bit$(3)="" REM Remove the cross in set 1
CHANGESPRITE 1,3,bit$(),0,0 REM display for 3/10 seconds
BUSY *“flash box, 40”,3 REM box at offset 40 still

GET

bit$(3)="cross”

CHANGESPRITE 1,5,bit$(),0,0 REM cross centralised - set 1
bit$(3)="box”

CHANGESPRITE 2,5,bit$(),0,0 REM box centralised - set 2
BUSY “Escape quits”

DO

POSSPRITE RND*(gWIDTH-11),RND*(gHEIGHT-11)
REM move sprite randomly
PAUSE -20 REM once a second
UNTIL KEY =27
CLOSESPRITE sprld%
ENDP

PROC crBits:
REM create bitmap files if they don’t exist
IF NOT EXIST(“cross.pic”) OR NOT EXIST(*box.pic”)
gCREATE(0,0,11,11,1,1)
gAT 5,0 :gLINEBY 0,11
gAT 0,5 :gLINEBY 11,0
gSAVEBIT “cross”
gCLS
gAT 0,0
gBOX gWIDTH,gHEIGHT
gSAVEBIT “box”
gCLOSE gIDENTITY
ENDIF
ENDP

(ADVANCED TOPICS ‘

OPL

It is sometimes useful to know which keys are being pressed at a given moment and also when a key is released.
For example, in a game, a certain key might start some action and releasing the key might stop it.

[] GETEVENT32 ev&() andGETEVENTAS32 ev&() return the scan code of any key pressed to the third

element of the arragv&() . It is the programmers responsibility to track to key currently being pressed.
The scan codes are given in hex in the following representation of the keyboard:

04 || 31 || 32 || 33 || 34 || 35 || 36 || 37 || 38 39 30 || O

31 57 || 43 52 54 59 55 49 4F || 50 03

02] 41 53 44 46 47 || 48 || 4A || 4B || 4C || TE

12 || 3A 58 || 43 56 || 42 4E || 4D || 7A || 10 13

16 18 94 05 M| 0E || 11 OF

[CALL($288e,ADDR(scan%())) returns with the arragcan%() , which must have at least 10
elements, containing a bit set for keys currently being pressed.

Every key on the keyboard is represented by a unique bit. This includes the modifier keys (Shift, Control
etc.) and the application buttons (System, Data, Word etc.).

A set bit simply signifies a pressed key - a key pressed on its own gives one bit set; that same key with a
modifier gives the same bit set with another bit for the modifier; the modifier on its own gives the same
modifier bit on its own.

The following table lists each key (according to the text printed on the physical key itsesfatidé()
array element for that key and the hexadecimal bit mask to be ANDed with that array element to check
whether the key is being pressed.

key scan%() mask key scan%() mask
System 5 $200 Data 4 $200
Word 6 $200 Agenda 2 $200
Time 1 $200 World 3 $200
Calc 2 $100 Sheet 1 $100
Esc 8 $100 1 8 $02

2 8 $04 3 6 $40

4 5 $04 5 5 $08

(ADVANCED TOPICS [81)

OPL

6 8 $08 7 4 $40
8 3 $08 9 3 $10
0 2 $10 + 2 $08
Delete 3 $01 Tab 1 $04
Q 7 $02 w 7 $20
E 6 $20 R 5 $02
T 5 $10 Y 1 $08
] 4 $20 | 3 $04
O 3 $20 P 2 $20
- 2 $04 Enter 1 $01
Control 3 $80 A 7 $04
7 $10 D 6 $10
F 6 $02 G 5 $20
H 8 $40 J 4 $10
K 3 $02 L 3 $40
* 2 $40 / 2 $02
Left shift 2 $80 Z 7 $08
X 7 $40 C 6 $08
\ 6 $04 B 5 $40
N 1 $40 M 4 $08
' 4 $02 8 $10
Up 8 $20 Right shift 4 $80
Psion 1 $80 Menu 6 $80
= 5 $80 Space 5 $01
Help 4 $04 Left 1 $10
Down 1 $20 Right 1 $02

For example, pressing Tab sets bit Zcdn%(1) , pressing Control sets bit 7 ®¢an%(3) and pressing
both together sets both these bits. So Tab is being pressea¥(1) AND $04 is non-zero, and
Control is being pressedstan%(3) AND $80 is non-zero.

A possible strategy for scanning the keys might be to wait for any key of interest using GETEVENT or
GET (allowing switch off and less intensive use of the battery), start the required action, which is to be
continued only while the key is being pressed, scan the keyboard, as discussed above, until the key is
released, and then stop the action, wait for the next key and repeat.

@ Note that the key returned by GETEVENT or GET is not precisely synchronised with those scanned, so

once you have waited for a relevant key you should scan for all the keys pressed, ignoring the keycode
returned by GETEVENT or GET.

(ADvANCED TOPICS [82)

OPL

@ Note that one of the fundamental differences between the Series 3¢ and the Series 5 is that while any OPL
program on the Series 3c has a 64K limit on the memory it may use, the memory which an OPL program
may use on the Series 5 is unlimited up to the constraint placed by the machine itself. Therefore while 16-bit
addresses are sufficient on the Series 3c, the Series 5 requires 32-bit addressing. As far as I/O functions are
concerned, this means that any argument which is an address is an integer on the Series 3c, while it must be
a long integer on the Series 5. See also the later section on '32-bit addressing’.

OPL includes powerful facilities to handle input and output (‘1/O’). These functions and commands can be used
to access all types of files on the Psion, as well as various other parts of the low-level software.

This section describes how to open, close, read and write to files, and how to set the position in a file. The data
file handling commands and functions have been designed for use specifically with datadlE€ functions
and commands are designed for general file acce¥ou don’'t need to use them to handle data files.

These are powerful functions and commands and they must be used with caBzfore using them you must
read this document closely and have a good grounding in OPL in general.

You should have a good understanding of error handling before using the 1/0 functions.

The functions in this section never raise an OPL error message. Instead they return a value - if this is less than
zero an error has occurred. It is the responsibility of the programmer to check all return values, and handle errors
appropriately. Any error number returned will be one of those in the list given in the ‘Errors.pdf document. You
can use ERR$ to display the error as usual.

Many of these functions useéhandle which must be a long integer variable on the Series 5 and an integer
variable on the Series 3c (see the note above). IOOPEN assigns this handle variable a value, which subsequent
I/0O functions use to access that particular file. Each file you IOOPEN nelffisrant handle variable.

In this sectionyar denotes an argument which should normally be a LOCAL or GLOBAL variable. (Single
elements of arrays may also be used, but not field variables or procedure parameters.) Whensayothsee
addressof the variable is passed, not the value in it. (This hapmetasnatically; don’t use ADDR yourself.)

In many cases the function you are calling passes information back by settingathesgiables.

var is just to show you where you must use a suitable variable; you don’t actually type it.

L] For exampleret%=I0O0OPEN(var handle%,name$,mode%) in the syntax description indicates that
IOOPEN(h%,“abc”,0) s correct (provided»is a simple variable), b®OPEN(100,“abc”,0) is
incorrect.

L] For exampleret%=I0O0OPEN(var handle&,name$,mode%) in the syntax description indicates that
IOOPEN(h&,“abc”,0) is correct (provideds& is a simple variable), bUWDOPEN(100,"“abc”,0) is
incorrect.

It is possible, though, that you already have the address of the variable to use. It might be that this address is held
in a field variable, or is even a constant value, but the most common situation is when the address was passed as
a parameter to the current procedure.

(ADvANCED ToOPICS [83)

OPL

If you add &# prefix to avar argument, this tells OPL that the expression following is the address to be used,
not a variable whose address is to be taken.

Here is an example program:

PROC doopen:(phandle&, name$, mode%)
LOCAL error%
REM IOOPEN, handling errors
error% = IOOPEN(#phandle&, name$, mode%)
IF error% : RAISE error% : ENDIF

ENDP

The current value held iphandle& is passed to IOOPEN. You might cddlopen: like this:

local filhand%,...

doopen:(addr(filhand%),“log.txt",$23)

Thedoopen: procedure calls IOOPEN with the addres§lb&nd% , and IOOPEN will write the handle into
filhand%

(] Note thatphandle& should be replaced kphandle% (i.e. integer rather than long integer) on the Series
3c.

If you ever need to add or subtract numbers from the address of a variable, use the UADD and USUB
functions, or you run the risk of ‘Overflow’ errors.

OPENING A FILE WITH IOOPEN
ret%=I00OPEN(var handle%,name$,mode%

or

[] ret%=I0O0OPEN(var handle%,address&,mode%o)

[] ret%=I00OPEN(var handle%,address%,mode%)

for unique file creation.

Creates or opens a file (or device) caleane$ and sethiandle% to the handle to be used by the other I/O
functions.

mode%specifies how the file is to be opened. It is formed by ORing together values which fall into the three
following categories:

(ADVANCED TOPICS ‘

OPL

One and only one of the following values must be chosen from this category.

$0000 Open an existing file (or device). The initial current position is set to the start of the file.
$0001 Create a file which must not already exist.

$0002 Replace a file (truncate it to zero length) or create it if it does not exist.

$0003 Open an existing file for appending. The initial current position is set to the end of the file. For

text format files (see $0020 below) this is the only way to position to end of file.

$0004 Creates a file with a unique name. For this case, you must use the address of a string instead of
name$. This string specifies only the path of the file to be created (any file name in the string is
ignored). The string at address% is then set by IOOPEN to the unique file name generated (this
will include the full path). The string must be large enough to take 130 characters (the maximum
length file specification). For example:

s$="C:\home\” REM C should be replaced with M on Series 3c
IOOPEN(handle%,ADDR(s$),mode%)

This mode is typically used for temporary files which will later be deleted or renamed.

One and only one of the following values must be chosen from this category. When creating a file, this value
specifies the format of the new file. When opening an existing file, make sure you use the format with which it
was created.

$0000 The file is treated as a byte stream of binary data with no restriction on the value of any byte and
no structure imposed upon the data. Up to 16K can be read from or written to the file in a single
operation.

$0020 The file is treated as a sequence of variable length records. The records are assumed to contain text

terminated by any combination of the CR and LF ($0D, $0A) characters. The maximum record
length is 256 bytes and Control-Z ($1A) marks the end of the file.

[] onthe Series 5, all of these values are declared as constants in Const.oph. See the ‘Calling Procedures’

section of the ‘Basics.pdf’ document for details of how to use this file and Appendix E in the
‘Appends.pdf’ document for a listing of it.

Any combination of the following values may be chosen from this category.

$0100 Update flag. Allows the file to be written to as well as read. If not set, the file is opened for
reading only. Younust use this flag when creating or replacing a file.

$0200 Choose this value if you want the file to be operrémdomaccess (not sequential access), using
the IOSEEK function.

$0400 Specifies that the file is being opened for sharing for example, with other running programs. Use if
you want to read, not write to the file. If the file is opened for writing ($0100 above), this flag is
ignored, since sharing is then not feasible. If not specified, the file is locked and may only be used
by this running program.

(ADVANCED TOPICS [85)

OPL

Files should be closed when no longer being accessed. This releases memory and other resources back to the
system.

ret%=I0CLOSE(handle%)
Closes a file (or device) with the handilendle% as set by IOOPEN.

[] ret%=IOREAD(handle%,address&,maxLen%)

] ret%=I0OREAD(handle%,address%,maxLen%)

Reads up tonaxLen%bytes from a file with the handieandle% as set by IOOPENaddress& (or

address% on the Series 3c) is the address of a buffer into which the data is read. This buffer must be large
enough to hold a maximum ofaxLen%bytes. The buffer could be an array or even a single integer as
required. No more than 16K bytes can be read at a time.

The value returned t@t% is the actual number of bytes read or, if negative, is an error value.

If maxLen%exceeds the current record length, data only up to the end of the record is read into the buffer. No
error is returned and the file position is set to the next record.

If a record is longer thamaxLen% the error value ‘Record too large’ (-43) is returned. In this case the data
read is valid but is truncated to lengttaxLen% and the file position is set to the next record.

A string arraybuffer$(255) could be used, but make sure that you pass the addD&R (buffer$)+1
(UADD(ADDR(buffer$),1) on the Series 3c) to IOREAD. This leaves the leading byte free. You can then
POKEB the leading byte with the count (returnedett®s) so that the string conforms to normal string format.
See the example program.

If you request more bytes than are left in the file, the number of bytes actually read (even zero) will be less than
the number requested. Saét%<maxLen%, end of file has been reached. No error is returned by IOREAD in
this case, but the next IOREAD would return the error value ‘End of file’ (-36).

To read up to 16K bytes (8192 integers), you could declare an integebaifierfo(8192)

[] ret%=I0WRITE(handle%,address&,length%)

[] ret%=I0WRITE(handle%,address%,length%o)

Writeslength% bytes stored in a buffer atldress& (address% on the Series 3c) to a file with the handle
handle% .

When a file is opened as a binary file, the data written by IOWRITE overwrites data at the current position.

When a file is opened as a text file, IOWRITE writes a single record; the closing CR/LF is automatically added.

(ADVANCED TOPICS [86)

OPL

POSITIONING WITHIN A FILE
ret%=I0SEEK(handle%,mode%,var offset&)
Seeks to a position in a file that has been opened for random access (see IOOPEN above).

mode%specifies how the argumeotfset& is to be usedffset& may be positive to move forwards or
negative to move backwards. The values you can usadde%are:

1 Set position in a binary file to the absolute value specifiedfset& , with O for the first byte in the
file.
2 Set position in a binary file toffset& bytes from the end of the file
3 Set position in a binary file toffset& bytes relative to the current position.
6 Rewind a text file to the first recordffset& is not used, but you must still pass it as a argument, for

compatibility with the other cases.

IOSEEK sets the variabtd#fset& to the absolute position set.

EXAMPLE - DISPLAYING A PLAIN TEXT FILE

This program opens a plain text file, such as one created with the ‘Export as text...” option in the ‘File’ menu of
the Program editor on the Series 5, or the ‘Save as’ option in the Word Processor or Database applications on the
Series 3¢, and types it to the screen. Press Esc to quit and any other key to pause the typing to the screen.

PROC ioType:
LOCAL ret%,fName$(128),ixt$(255),address&
LOCAL handle%,mode%,k%
PRINT “Filename?”, :INPUT fName$: CLS
mode%=$0400 OR $0020 REM open=$0000, text=$0020, share=$0400
ret%=I0O0OPEN(handle%,fName$,mode%)
IF ret%<0
showkErr:(ret%)
RETURN
ENDIF
address&=ADDR(txt$)
WHILE 1
k%=KEY
IF k% REM if keypress
IF k%=27 REM Esc pressed
RETURN REM otherwise wait for a key
ELSEIF GET=27
RETURN REM Esc pressed
ENDIF
ENDIF
ret%=IOREAD(handle%,address&+1,255)
IF ret%<0
IF ret%<>-36 REM NOT EOF
showErr:(ret%)
ENDIF
BREAK
ELSE
POKEB address&,ret% REM leading byte count

CADVANCED TOPICS ‘

OPL

PRINT txt$
ENDIF
ENDWH
ret%=I0OCLOSE (handle%)
IF ret%
showeErr:(ret%)
ENDIF
PAUSE -100 :KEY
ENDP

PROC showErr:(val%)
PRINT “Error”,val%,err$(val%)
GET

ENDP

Note that this example may be used for any of the machines. However, any address variables may be changed
from long integers to integers if you are using the Series 3c or Siena.

ASYNCHRONOUS REQUESTS AND SEMAPHORES

This section provides the general background necessary for understanding how EPOC I/O devices can be
accessed by an OPL application program.

ASYNCHRONOUS REQUESTS
Many operating system services are implemented in two steps:

1. make the service request (sometimes referred to asighuengof a request)
2. wait for the requested operation to complete

In most cases, as well as providing functions for each step, the system provides a function containing both the
above steps. Such functions are cafigdchronousecause they automatically synchronise the requesting
process by waiting until the operation has completed. The internal function that makes the request without
waiting for completion is called amsynchronougunction.

Examples of asynchronous request functions are:

IOC (or IOA) for requests on an open I/O channel

KEYA for requests on the keyboard channel

[] GETEVENTA32 for requests of events from the widow server

[] PLAYSOUNDA: (in System OPX) for requests to play sound files

The synchronous versions of the above functions are IOW, GET, GETEVENT32 and PLAYSOUND:
respectively.

Applications use asynchronous requests in situations like the following:
1. make request A

2. make request B

3. wait for either of the requested operations to complete

Processes wait for the completion of asynchronous requests by waiting dfCGrssimaphorevhere each
request is associated witlstatus word

CADVANCED TOPICS ‘

OPL

When a process is created, the system automatically credt@ssmamaphor®n its behalf (a more accurately
descriptive name would have been &synchronous request semaphoisfter making one or more

asynchronous requests using IOC or I0A, a process calls IOWAIT to wait on the 1/0 semaphore for one of the
requests to complete. A typical application spends most of its time waiting on its /0O semaphore. For example,
an interactive application process that is waiting for user input is waiting on the 1/0 semaphore.

Semaphores are provided to synchronise cooperating processes (where, in this context, a process includes a
hardware interrupt). In OPL semaphores are used for synchronising the completion of asynchronous requests.

The semaphores in both the EPOC16 and EPOC32 operating systems are counting semaphores, having a signed
value that is incremented by calling IOSIGNAL and decremented by calling IOWAIT. A semaphore with a
negative value implies that a process must wait for the completion of an event.

The process or the hardware interrupt handler that implements the requested operation sends a signal to the
process (using a generalised version of IOSIGNAL directed to the required process) to indicate that the
operation has completed. If one or more wait handlers have been installed (wait handlers are described below),
they may process the signal and re-signal using IOSIGNAL. In some cases, it is convenient for the requestor to
use IOSIGNAL to signal itself and subsequently to process that signal in a central call to IOWAIT.

Although the arguments to asynchronous request functions vary, they all take a sstafaltediordargument,

which subsequently contains the status of the requested operation. On the Series 3c the status word is always a
16-bit integer, likestat% . On the Series 5, the status word is also a 16-bit integer, except when calling an
asynchronous OPX procedure that specifically requires a 32-bit integer status word, such as PLAYSOUNDA: in
System OPX.

All asynchronous requests exhibit the following behaviour:

1. While the request is pending, a 16-bit status word contains the negative -46.

L] A 32-bit status word however contains &80000001. Const.oph provides constant definitions for these
values. For details of how to use this file see the ‘Calling Procedures’ section of the ‘Basics.pdf’
document and see Appendix E in the ‘Appends.pdf’ document for a listing of it.

2. When the operation has completed, a value other than -46 is written to the status word. This value is zero or
positive to indicate success, or a negative error number to indicate failure. For 16-bit status words, an OPL
error value is used. See the ‘Errors.pdf’ document for a list of these.

D For 32-bit status words on the Series 5, an EPOC32 error value is used. The EPOC32 error values are
listed in Appendix G in the ‘Appends.pdf document.

3. The requesting process’s I/O semaphore is signalled (after the status word has been written).

Making a request while a previous request on the same status word is still pending will normally result in a
system panigvhere the program is killed immediately, without being able to trap the error.

When there are multiple requests, each request is associated with a different status word. After returning from
IOWAIT, the caller typicallypolls each status word until one is found that contains other than -46. That
completion is then processed (which might include renewing the asynchronous request) and IOWAIT is called
again to process the next completion.

(ADVANCED TOPICS [89)

OPL

Most asynchronous request functions made using IOC (or IOA) can be cancelled. To cancel such requests use
the IOCANCEL function.

For asynchronous requests made using a mechanism other than IOC (or IOA), a specific cancelling function
must be used instead:

* Use KEYC to cancel a KEYA request.

« [uUse GETEVENTC to cancel a GETEVENTA32 request.

« [use STOPSOUNDS: to cancel a PLAYSOUNDA: request.

The following general principles apply to all functions that cancel an asynchronous request:

« the cancel precipitates the completion of the operation (it does not stop the operation from completing).

e the cancel may or not be effective (that is, the operation may complete naturally before the cancel is proc-
essed).

e after a cancel, you must still process the completion of the asynchronous request (typically by immediately
calling IOWAITSTAT or IOWAITSTAT32, described below, to “use up” the signal). An exception to this
rule is that GETEVENTC and KEYC themselves wait for the cancellation signal, so IOWAITSTAT must
not be used.

A 16-bit status word is set to -48 when a request has been effective.

[] A 32-bit status word is set to -3 (EPOC32’s error code for ‘Cancel error’) when a request using a 32-bit
status word is cancelled.

When waiting for the completion ofgarticular asynchronous request, the wait on the 1/0 semaphore must be
sure that it is not fooled into a premature return by the completion of any other pending asynchronous request.
This is done by calling IOWAITSTAT which behaves in a similar way to IOWAIT except that it only returns
when the associated status word is other than -46.

[] For a 32-bit status word request, IOWAITSTAT32 is used instead, again behaving in a similar way to
IOWAIT except that it only returns when the associated 32-bit status word is other than &80000001.

In general, IOWAITSTAT (IOWAITSTAT32) is a safer option than IOWAIT to “use up” the signal resulting

from the cancelled operation. If the cancel is not immediately effective and another completion causes IOWAIT

to return, the program could continue and make another request before the cancelled operation completes (which
would result in a process panic).

(ADVANCED TOPICS [40)

OPL

In the following example, the opened asynchronous tiim&€han% is used to construct a synchronous

function which attempts to write the passed string to the opened serial chen@tedn% . If it takes more that

5 seconds to complete the write, the procedure raises the ‘inactivity’ error -54. For simplicity it is assumed that
there are no other outstanding events which could complete and that both requests started successfully. Thus it is
certain that on return from the call to IOWAIT, one of the two asynchronous requests has completed.

PROC strToSer:(inStr$)
LOCAL str$(255) REM local copy of inStr$ needed for ADDR
LOCAL len%,timStat%,serStat%,timeout%,ret%,pStr&
REM request asynchronous serial write

str$=inStr$
pStr&=ADDR(str$)+1 REM pointer to string skipping leading count
byte

len%=LEN(str$)
IOC(serChan%,?2,serStat%,#pStr&,len%)
REM request asynchronous serial write

timeout%=50 REM 5 second timeout
IOC(timChan%,1,timStat%,timeout%) REM Relative timer -
function 1
IOWAIT
IF serStat%=-46 REM must have timed out
IOCANCEL (serChan%) REM cancel serial request
IOWAITSTAT serStat% REM use up the signal
RAISE -54 REM inactivity timeout
ENDIF
IOCANCEL(timChan%) REM cancel timer request
IOWAITSTAT timStat% REM use up the signal
ENDP

Wait handlers are functions that handle the completion of asynchronous requests from within IOWAIT (or
IOWAITSTAT). Active wait handler functions are called just before IOWAIT would have otherwise returned.

Many /O devices install device wait handlewhen the device is opened.

Wait handlers are only called when the process calls IOWAIT (or a function such as IOWAITSTAT that calls
IOWAIT). While an application performs a computationally intensive task that takes an extended time, it should
consider calling IOYIELD (which effectively calls IOSIGNAL followed by IOWAIT) to allow any installed

wait handlers to be called. Application programs must never assume that no wait handlers have been installed.

In a multi-tasking operating system it is extremely anti-social to wait for an operation to complete by polling the
status word in a tight loop rather than call IOWAIT (because the polling will “hog” the processor to no benefit).
However, when there is useful work to be done between each poll, it can be appropriate to poll - for example, to
check periodically for user input while performing an extended calculation.

When a poll detects a completed status word, it is still obligatory to “use up” the signal by calling IOWAIT
(otherwise you will get a “stray signal” later).

(ADVANCED ToOPICS [41)

OPL

The status word will be set only when either IOWAIT or IOYIELD is called. For a 32-bit status word, call
IOWAITSTAT32 instead.

For example:

I0C(handle%,func%,stat%,#pBuf&,len%)

DO
calc: REM perform part of some calculation until request complete
IOYIELD REM allow status word to be set

UNTIL stat%<>-46

If this approach is used, you should be aware that in some cases asynchronous requests are completed by a wait
handler and it is necessary to call IOYIEeforeeach poll to give any wait handlers a chance to run. For
example:

IOC(handle%,func%,stat%,#pBuf%,len%)

DO
calc: REM perform part of some calculation until request complete
IOYIELD REM allow handler to run

UNTIL stat%<>-46

This case occurs when making requests on a device driver that services hardware interrupts. For example, the
serial port driver services the hardware interrupt generated by the receipt of a serial frame. A hardware interrupt
handler cannot write directly to the data segment of the requesting process because that data segment may be
moving when the interrupt occurs. Instead, the interrupt handler must write first to a fixed memory location
(either in the operating system variables if it is an in-built driver or in a device segment if it is an external driver)
and then signal the 1/0 semaphore of the requesting process. When the requesting process next calls IOWAIT
(directly or indirectly through say IOYIELD), the device driver’s wait handler is called to copy the data safely to
the process data segment.

Device drivers that are implemented by a server process (for example, the window server) do not require a wait
handler to complete operations.

The following 1/O functions provide access to devices. A full description is not within the scope of this User
Guide, since these functions requisg¢ensiveknowledge of the Series 5 or Series 3¢ operating systems and
related programming techniques. The syntax and argument descriptions are provided here for completeness.

The previous section explains in detail the semantics of asynchronous 1/O. In the descriptions of the
asynchronous I/O functions below, a careful reading of that section is assumed.

ret%=I0W(handle%,func%,var argl,var arg2)

The device driver opened witltandle% (as returned by IOOPEN) performs the synchronous I/O function
func% with the two further arguments. The size and structure of these two arguments is specified by the
particular device driver's documentation.

(ADVANCED ToOPICS [42)

OPL

IOC(handle%,func%,var stat%,var al,var a2)
IOC(handle%,func%,var stat%,var al)

IOC(handle%,func%,var stat%)

Make an I/O request with guaranteed completion. The device driver openduawitle% (as returned by
IOOPEN) performs the asynchronous I/O funcfiemc% with up to two further arguments. The size and
structure of these arguments is specified by the particular device driver's documentation.

As explained in detail in the previous sectiasynchronousneans that the 10C returns immediately, and the
OPL program can carry on with other statemestetus% will always be set to -46, which means that the
function is still pending.

When, at some later time, the function completetus% is automatically changed. (For this reason,

status% should usually be global since if the program is still runnitgtus% must be available when the
request completes, or the program will probably crasi}attis% >=0, the function completed without error.

If status%<0 , the function completed with error. The return values and error codes are specific to the device
driver.

If an OPL program is ready to exit, it does not have to wait for any signals from pending IOC calls.

ret%=I0A(handle%,func%,var status%,var argl,var arg2)

The device driver opened wittandle% (as returned by IOOPEN) performs the asynchronous 1/O function
func% with two further arguments. The size and structure of these two arguments is specified by the particular
device driver’'s documentation.

This has the same form as 10C, but the return vedumot be ignored. 10C is effectively the same as:
ret%=I0A(h%,f%,stat%,...)

IF ret%<0
stat%=ret%
IOSIGNAL

ENDIF

IOC allows you to assume that the request started successfully - any error is always given in the status word
stat% . If there was an errostat% contains the error code and the IOSIGNAL causes the next IOWAIT to
return immediately as if the error occurgter completion. There is seldom a requirement to know whether an
error occurred on starting a function, and I0C should therefore nearly always be used in preference to 10A.

IOWAIT

Wait for an asynchronous request (such as one requested by IOC, KEYA or GETEVENTA32) to complete.
IOWAIT returns wherany asynchronous I/O function completes. Chstzkus% to find out which request
has completed. Use IOWAITSTAT with the relevant status word to wait for a particular request to complete.

IOSIGNAL
Replace a signal of an 1/O function’s completion.

As shown in ‘A simple example using asynchronous I/O’ in the previous section, it is sometimes useful to
construct a synchronous operation from two asynchronous operations by waiting for either to complete before
returning. In that case it waited for either the serial write request or a timeout. As noted there, the example
assumed that there were no other outstanding asynchronous requests. If there had been one or more

(ADVANCED ToOPICS [48)

OPL

asynchronous requests made before calling that procedure, such as a request to play a sound file, and if that
request had completed before both the serial write and the timer request, the procedure would incorrectly assume

that the timer had completed:

IOWAIT

IF serStat%=-46
IOCANCEL (serChan%)
IOWAITSTAT serStat%
RAISE -54

ENDIF

IOCANCEL(timChan%)
IOWAITSTAT timStat%

REM must have timed out
REM cancel serial request
REM use up the signal
REM inactivity timeout

REM cancel timer request
REM use up the signal

To deal with this situation correctly, the procedure should instead check that one of the particular two requests it
knows about has completed and re-signal to ‘put back’ the signal consumed for the sound file completion:

PROC strToSer:(inStr$)
LOCAL str$(255)

REM local copy of inStr$ needed for ADDR

LOCAL len%,timStat%,serStat%,timeout%,ret%,pStr&

LOCAL signals%
LOCAL err%

str$=inStr$

REM count of external signals

pStr&=ADDR(str$)+1 REM ptr to string skipping leading count byte
len%=LEN(str$)

IOC(serChan%,?2,serStat%,#pStr&,len%)

REM request asynchronous serial write

timeout%=50

IOC(timChan%,1,timStat%,timeout%)

REM 5 second timeout
REM relative timer - function 1

WHILE 1 REM forever loop
IOWAIT REM wait for any completion
IF timStat%<>-46 REM timed out
IOCANCEL (serChan%) REM cancel serial request
IOWAITSTAT serStat% REM use up the signal
err%=-54 REM inactivity timeout (raised
REM below after re-signalling)
BREAK REM stop waiting and re-signal
ELSEIF serStat%<>-46 REM serial write complete
IOCANCEL(timChan%) REM cancel timer request
IOWAITSTAT timStat% REM use up the signal
BREAK REM stop waiting and re-signal
ELSE REM other unknown request

signals%=signals%-+1

ENDIF
ENDWH
WHILE signals%>0

IOSIGNAL
signals%=signals%-1

REM count other signals
REM loop again for next

REM now re-signal any consumed
REM external signals

(ADVANCED ToOPICS [44)

OPL

ENDWH
IF err%
RAISE err%
ENDIF
ENDP

IOSIGNAL is called only after exiting the IOWAIT loop, otherwise the signal would cause the IOWAIT to
return immediately.

IOWAITSTAT var status%

Wait for a particular asynchronous function, called with I0C, to complete.

[] IOWAITSTAT32 var stat&

Similar to IOWAITSTAT but takes a 32-bit status word. IOWAITSTAT32 should be called only when you
need to wait for completion of a request made using a 32-bit status word when calling an asynchronous
OPX procedurestatus& will be &80000001 while the function is still pending, and on completion will
be set to the appropriate EPOC32 error code, listed in Appendix G in the ‘Appends.pdf do&erent.

also the ‘OPX.pdf’ document and the ‘Alphabetic listing’ section of the ‘Glossary.pdf’ document.

IOYIELD

Ensures that any asynchronous function is given a chance to run. Some devices are unable to perform an
asynchronous request if an OPL program becomes computationally intensive, using no I/O (screen, keyboard
etc.) at all. In such cases, the OPL program should use IOYIELD before checkitaguit®o variable. This is
alwaysthe case on the Series 5. IOYIELD is the equivalent of IOSIGNAL followed by IOWAIT - the IOWAIT
returns immediately with the signal from IOSIGNAL, but the IOWAIT causes any asynchronous handlers to
run.

IOCANCEL(handle%)

Cancels any outstanding asynchronous I/O request made using I0OC (or IOA) on the specified channel, causing
them to complete with the completion status word containing -48 (‘l/O cancelled’). The return value is always
zero and may be ignored.

The IOCANCEL function is harmless if no request is outstanding (e.g. if the function completed just before
cancellation requested).

GETEVENTA32(var status%,var event&())

This is an asynchronous window server read function. You must declare a long integer array with at least 16
elements. If a window server event occurs, the information is returreae@im&() as described under
GETEVENTS32 in the alphabetic listing.

GETEVENTC(var status%)

Cancels a GETEVENTAS32. Note that IOWAITSTAT shoulot be called after GETEVENTC - OPL consumes
the GETEVENTC signal.

(ADVANCED ToOPICS [45)

OPL

err%=KEYA(var status%,key%())

This is an asynchronous keyboard read function. You must declare an integer array with two elements here,
key%(1) andkey%(2) to receive the keypress information. If a key is pressed, the information is returned in
this way:

* key%(1) is assigned the character code of the key.

e The least significant byte &By%(2) takes the key modifier, in the same way as KMOD 2 for Shift down,
4 for Control down and so on. KMOD cannot be used with KEYA.

e The most significant byte of key%(2) takes the count of keys pressed (0 or 1).
KEYA needs an IOWAIT in the same way as IOC.

IOW has this specification:
ret%=l10W(handle%,func%,var argl,var arg2)

Here are some uses:

LOCAL a%(6)

IOW(-2,8,a%(),a%()) REM 2nd a% is ignored

senses the current text window (as set by the most recent SCREEN command) and the text cursor position
ignoring any values already in the ar@36() . This gives the same information as SCREENINFO, which
should be used in preference (see the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document).

The first four elements are set to represent the offset of the current text window from the default text window.
a%(1) is set to thex-offset of the top left corner of the current text window from the default text window’s top
left corner anch%(2) to they-offset of the top left corner of current text window. Simila®g(3) and

a%(4) give the offset of bottom right corner of text window from the bottom right corner of the default text
window. For example, if the most recent SCREEN commandS@REEN 10,11,4,5 the first four elements

of the arraya%() would be set to (3,4,13,15). Theandy positions of the cursaelative to the current text
window are written ta%(5) anda%(6) respectively. All positions and offsets tak® , not1,1 , as the

point at the top left.

LOCAL i%,a9%(6)

i9%=2

a%(1)=x1% :a%(2)=y1%
a%(3)=x2% :a%(4)=y2%
IOW(-2,7,i%,a%())

clears a rectangle 81%,y1% (top left),x2%,y2% (bottom right). Ify2%is one greater tharil%, this will
clear part or all of a line.

(ADVANCED TOPICS [46)

OPL

EXAMPLE OF IOW SCREEN FUNCTIONS

The final two procedures in this module call the two IOW screen functions described beforehand. The rest of the
module lets you select the function and values to use. It uses the technique used in the ‘Friendlier interaction’
section of the ‘GUIl.pdf’ document of handling menus and short-cut keys by calling procedures with string
expressions.

[] PROC iotest:
GLOBAL x1%,x2%,y1%,y2%
LOCAL i%,h$(2),a$(5)
x1%=2 :y1%=2

x2%=25 :y2%=5 REM our test screensize
SCREEN x2%-x1%,y2%-y1%,x1%,y1%
AT1.1
PRINT “Text window IO test”
PRINT “Control-Q quits” REM should be “Psion-Q” on 3c
h$="cr” REM our shortcut keys
DO

i%=GET

IF i1%=$122 REM MENU key

mINIT

MCARD “Set”,"Rect”,%r
mMCARD “Sense”,"Cursor”,%c
i%=MENU
IF i% AND INTF(LOC(h$,CHR$(i%)))
a$="proc”+chr$(i%)
@(a%):
ENDIF
ELSEIF i% AND $200 REM shortcut key
1%=(i%-$200)
i%=LOC(h$,CHR$(1%)) REM One of ours?
IF i%
a$=“proc”+MID$(h$,i%,1)
@(a$):
ENDIF REM ignore other weird keypresses
ELSE REM some other key, so return it
PRINT CHR$(i%);
ENDIF
UNTIL O
ENDP

PROC procc:
LOCAL a&
a&=iocursé&:
PRINT “x";1+(a& AND &ffff);
PRINT “y”;1+(a&/&10000)
ENDP

PROC procr:
LOCAL xx1%,yy1%,xx2%,yy2%
LOCAL xx1&,yy1&,xx2&,yy2&
dINIT “Clear rectangle”

(ADVANCED TOPICS ‘

OPL

dLONG xx1&,“Top left x”,1,x2%-x1%
dLONG yy1&,“Top left y”,1,y2%-y1%
dLONG xx2&,"“Bottom left x”,2,x2%-x1%
dLONG yy2&,“Bottom left y”,2,y2%-y1%
IF DIALOG
XX1%=xx1&-1 :xX2%=xx2&-1
yy1%=yy1&-1 :yy2%=yy2&-1
iorect:(xx1%,yy1%,xx2%,yy2%)
ENDIF
ENDP

PROC iocursé&:
LOCAL a%(4),a&
REM don’t change the order of these!
a%(1)=x1% :a%(2)=y1%
a%(3)=x2% :a%(4)=y2%
IOW(-2,8,a%(),a%()) REM 2nd a% is ignored
RETURN a&
ENDP

PROC iorect:(xx1%,yy1%,xx2%,yy2%)
LOCAL i%,a%(6)
i%=2 :REM “clear rect” option
a%(1)=xx1% :a%(2)=yy1%
a%(3)=xx2% :a%(4)=yy2%
IOW(-2,7,i%,a%())

ENDP

[] PROC iotest:
GLOBAL x1%,x2%,y1%,y2%
LOCAL i%,h$(2),a$(5)
x1%=2 :y1%=2

X2%=25 :y2%=5 REM our test screensize
SCREEN x2%-x1%,y2%-y1%,x1%,y1%
AT 11
PRINT “Text window IO test”
PRINT “Control-Q quits” REM should be “Psion-Q” on 3c
h$="cr” REM our shortcut keys
DO

i%=GET

IF i%=%$122 REM MENU key

mINIT

mCARD “Set”,"Rect”,%r
MCARD “Sense”,”Cursor”,%c
i%=MENU
IF i% AND INTF(LOC(h$,CHR$(i%)))
a$="proc”+chr$(i%)
@(a$):
ENDIF

CADVANCED TOPICS ‘

OPL

ELSEIF KMOD AND 4
1%=i%+$40
i%=LOC(h$,CHR$(i%))
IF i%

a$="proc”+MID$(h$,i%,1)
@(a$%):
ENDIF

ELSE
PRINT CHR$(i%);

ENDIF

UNTIL O

ENDP

PROC procc:
LOCAL a&
a&=iocursé&:

PRINT “x";1+(a& AND &ffff);
PRINT “y”;1+(a&/&10000)

ENDP

PROC procr:

LOCAL xx1%,yy1%,xx2%,yy2%
LOCAL xx1&,yy1&,xx2&,yy2&
dINIT “Clear rectangle”
dLONG xx1&,“Top left x”,1,x2%-x1%
dLONG yy1&,“Top left y”,1,y2%-y1%
dLONG xx2&,“Bottom left x”,2,x2%-x1%
dLONG yy2&,“Bottom left y”,2,y2%-y1%
IF DIALOG
XX1%=xx1&-1 :XxX2%=xx2&-1
yy1%=yy1&-1 :yy2%=yy2&-1
iorect:(xx1%,yy1%,xx2%,yy2%)
ENDIF

ENDP

PROC iocursé&:

LOCAL a%(4),a&

REM don’t change the order of these!
a%(1)=x1% :a%(2)=y1%

a%(3)=x2% :a%(4)=y2%
IOW(-2,8,a%(),a%())

RETURN a&

ENDP

PROC iorect:(xx1%,yy1%,xx2%,yy2%)

LOCAL i%,a%(6)

i%=2 :REM “clear rect” option
a%(1)=xx1% :a%(2)=yy1%
a%(3)=xx2% :a%(4)=yy2%
IOW(-2,7,i%,a%())

ENDP

REM Ctrl modification

REM One of ours?

REM ignore other weird keypresses
REM some other key, so return it

REM 2nd a% is ignored

CADVANCED TOPICS ‘

OPL

L The following two examples could not be used on the Series 5. The use of sound in OPL on the Series 5 is
handled with the use of System OPX. See the ‘OPX.pdf’ document for further details of how to use this.

The ALM: device provides access to alarms. When writing to it with IOW, IOC or IOA, you can use these two
functions:

» function=1 - only the date (and no time) is shown on the screen when the alarm rings - e.g. Thu 5 Sep

e function=2 - the day and time are shown - e.g. Thu 11:54

In either case, you must pass these two arguments:

e An array of 2 long integers the first is the time for the alarm to go off, and the second is the time for which it
is due. Both are given in seconds since midnight on 1/1/1970.

* A message, aszero-terminated string of up to 64 characters.

This procedure asks for the information for an alarm, and sets it (as type 2 day and time to be shown when the
alarm rings). If you press the Time button, and this is the next alarm to ring, it is shown as a RunOpl alarm.

PROC alm:

LOCAL h%,a&(2),a$(64),b$(65),d&.,t&,t2&,a%,r%,s%
r%=100PEN(h%,”ALM:",0)
IF r%<0 :RAISE r% :ENDIF
d&=DAYS(DAY,MONTH,YEAR) REM today
t&=DATETOSECS(1970,1,1,HOUR,MINUTE,0)
dINIT “Set alarm”
dTIME t&,"Time”,0,0,DATETOSECS(1970,1,1,23,59,59)
dDATE d&,"Date”,d&,DAYS(31,12,2049)
dTIME t2&,”Alarm advance time”,2,0,86399
dEDIT a$,"Message”
IF DIALOG

a&(2)=86400%(d&-25567)+t&

a&(1)=a&(2)-t2&

b$=a$+CHR$(0) REM zero-terminate the string
10C(h%,2,5%,a&(),#UADD(ADDR(b$),1))
ENDIF
IOCLOSE(h%)
ENDP

At the moment the alarm rings, eitre8t must still be available to take the status word set byAihig:

function, or the program must have exited. Otherwise the status word will be written to a random area of
memory. So in this example, no error-checking is done after the 10C - the program just ends. So you would have
to use this as a whole program itself - you must not call this procedure as written here from another procedure.

(ADVANCED TOPICS [80)

OPL

[] DIALLING EXAMPLE - IOW TO SND:

The SND: device provides sound services on the Series 3c. One function, number 10, provides access to DTMF
dialling. It requires these two arguments:

e The number to dial, as a zero-terminated string of up to 24 characters.

e An array of 2 integers. The first is the tone length (*256) plus the delay length, and the second is the pause
length. All of these are specified in 1/32 of a second.

PROC dtmf:
LOCAL h%,a$(24),b$(25),z%,r%,a%(2)
r%=I00PEN(h%,"SND:",0)
IF r%<0 :RAISE r% :ENDIF
dINIT
dEDIT a$,"Dial”
IF DIALOG
a%(1)=8+(256*8)
a%(2)=48
b$=a$+CHRS$(0)
r%=I0W(h%,10,#UADD(ADDR(b$),1),a%:())
IF r%<0 :RAISE r% :ENDIF
ENDIF
r%=I0CLOSE(h%)
IF r%<0 :RAISE r% :ENDIF
ENDP

L] The following section does not apply to the Series S'he use of sound in OPL on the Series 5 is handled
with the use of System OPX. See the ‘OPX.pdf’ document for further details of how to use this.

RECORDING AND PLAYING SOUNDS ON THE SERIES 3C AND SIENA

This section explains how to write a program which records soundsatonal fileusing the in-built Series 3c
microphone, and which plays these or pre-recorded sound files back.

SOUND FILE STRUCTURE

Series 3c sound files are files withVeVE extension that contain a 32-byte header and a byte stream of digital
sound which is sampled and played back at 8000 bytes per second (12-bit sound is converted to 8-bit using A-
Law encoding).

The file header has the following format:

offsetin file bytes contents

0 16 zero-terminated ‘ALawSoundFile**
16 2 version of this format

18 4 number of 8-bit samples

22 2 trailing silence in ticks

24 2 repeats

26 6 spare bytes reserved for future use

(ADVANCED TOPICS ‘

OPL

The number of samples is the number of bytes following the header and should always be size of file less 32 for
the header.

The silence in ticks is the number of system ticks of silence appended to each repeat on playback (in practice,
you get at least 2 ticks between repeats). A system tick is 1/32 of a second or 250 samples.

The repeats are the number of times to repeat the sound on playback (0 and 1 are treated as the same).

You can truncate the sound file, change the number of repeats and the trailing silence by changing the file length
and header using the 1/O binary file handling functions (IOOPEN, IOW, IOSEEK, IOWRITE etc.) described
elsewhere in this document.

For example, you can truncate the file to lenggiwLen& using:ret%=I0W(handle%,11,newLen&,#0)

The following set of procedures perform asynchronous recording and playing of sounds.

PROC recorda:(pstat%,inname$,size%)
LOCAL name$(128)
name$=inname$+chr$(0)
CALL($2186,UADD(ADDR(name$),1),size%,0,0,pstat%)
ENDP

PROC recordc:
CALL($2386)
ENDP

PROC recordw%:(inname$,size%)
LOCAL name$(128),p%,ret%
p%=PEEKW($1c)+6 REM address of saved flags after CALL
name$=inname$+chr$(0)
ret%=CALL($2286,UADD(ADDR(name$),1),size%)

IF PEEKW(p%) AND 1 REM carry set for error
RETURN ret% OR $FF00 REM return error
ENDIF
ENDP

PROC playa:(pstat%,inname$,ticks%,vol%)
LOCAL name$(128)
name$=inname$+chr$(0)
CALL($1E86,UADD(ADDR(name$),1),ticks%,vol%,0,pstat%)
ENDP

PROC playc:
CALL($2086)
ENDP

PROC playw%:(inname$,ticks%,vol%)
LOCAL name$(128),p%,ret%
p%=PEEKW($1c)+6 REM address of saved flags after CALL
name$=inname$+chr$(0)

(ADVANCED TOPICS [82)

OPL

ret%=CALL($1F86,UADD(ADDR(name$),1),ticks%,vol%)

IF PEEKW(p%) AND 1 REM carry set for error
RETURN ret% OR $FF00 REM return error
ENDIF
ENDP
recorda:(pstat%,inname$,size%) andrecordw%:(inname$,size%) respectively perform

asynchronous and synchronous recording tarfitame$. Any existing file is replaced. You can only record to
the Internal disk or to a RAM SSD - you cannot record to a Flash SSD. (You can playback from a Flash SSD,
however.)

size% specifies the maximum number of bytes to be recorded in units of 2048 bytes. To record for one second
size%=4 . This figure excludes the 32-byte header. Before recording, a file of 188¢#ize%*2048 bytes
is created and there must actually be room on the disk for a file of that length.

pstat% is the address of the status word to take the completion code for asynchronous recording.
recordc: cancels recording and truncates the file to the actual length recorded before cancellation.

playa:(pstat%,inname$,ticks%,vol%) andplayw%:(inname$,ticks%,vol%) respectively
perform asynchronous and synchronous playingmméme$.

inname$ should either be the filename of the sound file to play or a ** followed by just the name component
of the sound file. If it is preceded by a ‘¥, the extensMfVE is assumed and the service automatically
searche®ROM:: and theWVE directories oM: (Internal disk)A: andB: (in that order). Th&OM:: .WVE

files have nameSYS$AL0L, SYS$AL02 andSYSS$ALO3.

ticks% is the duration that the sound file will play back in system ticks. If it is shorter than the given sound
then playback is truncated to that timetidks% is negative, in addition to truncating the playback of longer
files, it pads out as necessary to that duration with silence. If duration is zero, it plays the file without truncation
or padding. (Alarms use a parameter of -480 to truncate or pad out to 15 seconds.)

volume% is a number between 0 and 5 inclusive, with 0 being the loudest. On the Series 3c there are only 4
actual levels: 0/1, 2, 3, and 4fistat% is the address of the status word to take the completion code for
asynchronous playback. Playback will append periods of silence and repeat the sound as specified in the file
header.

playc: cancels playing back a sound.

The system dialogs that are used to set alarms detect the presence/é¥&rijes in the\WVE directory of
any local directory (in practicé\: , B: and Internal) and make these available (by file name) as the sound of the
alarm.

When an alarm with aVVEfile rings, WVEfile playback (including any repeats) is clipped to 15 seconds. If
the .WVEfile plays for less than 15 seconds (including any repeats), the 15 seconds is padded out with silence.

(ADVANCED TOPICS [83)

OPL

EXAMPLE OF RECORDING

The following asynchronously recortime% seconds of sound to fifde$ or cancels the recording when
any key is pressed. The section I/O device handling and asynchronous requests also in this document discusses
the principles involved. Theecorda: andrecordc: procedures, from above, are used.

PROC record:(file$,time%)
LOCAL sstat%,kstat%,key%(4),size%,ret%,signals%
size%=time%*4

recorda:(ADDR(sstat%),file$,size%) REM async record
I0C(-2,1,kstat%,key%()) REM async key read
WHILE 1
IOWAIT REM wait for recording to complete, or a key
IF sstat%<>-46 REM if sound no longer pending
IOCANCEL(-2) REM cancel key read
IOWAITSTAT kstat% REM wait for cancellation

IF sstat%<0
gIPRINT “Error recording:"+err$(sstat%)

ENDIF
BREAK
ELSEIF kstat%<>-46 REM else if key pressed
recordc: REM cancel record
IOWAITSTAT sstat% REM wait for cancellation
gIPRINT “Cancelled”
BREAK
ELSE REM some async request made outside this PROC
signals%=signals%-+1 REM save it for later
ENDIF
ENDWH
WHILE signals%
IOSIGNAL REM put back foreign signals
signals%=signals%-1
ENDWH
ENDP

[1 SERIES 3C AND SIENA OPL DATABASE INFORMATION

ODBINFO var info%() is provided for advanced use only and allows you to use OS and CALL to call
DbfManagerinterrupt functions not accessible with other OPL keywords.

The description given here will be meaningful only to those who have access to full SDK documentation of the
DbfManager services, which explains any new terms. Since that documentation is essential for use of
ODBINFO, no attempt is made here to explain these terms.

ODBINFO returnanfo%() , which must have four elements containing pointers to four blocks of data; the first
corresponds to the file with logical namAethe second t8 and so on.

Take extreme care not to corrupt these blocks of memory, as they are the actual data structures used by
the OPL runtime interpreter.

CADVANCED TOPICS ‘

OPL

A data block which has no open file using it has zero in the first two bytes. Otherwise, the block of data for each
file has the following structure, giving the offset to each component from the start of the block and with offset O
for the 1st byte of the block:

Offset Bytes Description

2 DBF system'’s file control block (handle) or zero if file not open
offset in the record buffer to the current record

pointer to the field name buffer

number of fields

o o ~ N O

pointer to start of record buffer

length of a NULL record

non-zero if all fields are text

non-zero for read-only file

non-zero if record has been copied down

number of text fields

'_\
o
N P P R P N DNDNDDNDN

pointer to device name

To copy theDescriptive Recoraf logical file B to logical fileC:

PROC dbfDesc:
LOCAL ax%,bx%,cx%,dx%,si%,di%
LOCAL info%(4),len%,psrc%,pdest%
ODBINFO info%()

bx%=PEEKW/(info%(2)) REM handle of logical file B
ax%=$1700 REM DbfDescRecordRead
IF OS($d8,ADDR(ax%)) and 1

RETURN ax% OR $ff00 REM return the error
ENDIF

REM the descriptive record has length ax%
REM and is at address peekW(uadd(info%(2),8))

IF ax%=0

RETURN 0 REM no DescRecord
ENDIF
len%=ax%+2 REM length of the descriptive record read

REM + 2-byte header
psrc%=PEEKW (uadd(info%(2),8))
pdest%=PEEKW (uadd(info%(3),8))

CALL(%$a1,0,len%,0,psrc%,pdest%) REM copy to C'’s buffer
cx%=len%

bx%=PEEKW!(info%(3)) REM handle of logical file C
ax%=$1800 REM DbfDescRecordWrite

IF OS($d8,ADDR(ax%)) and 1
RETURN ax% OR $ff00
ENDIF
RETURN O REM success
ENDP

(ADVANCED TOPICS [88)

OPL

L The following section does not apply to the Series ®PXs provide a different mechanism for calling

language extensions and creating object instances. It uses language extensions provided in separate
EPOC32 DLLs written especially for OPL support. These DLLs can be added to the language by anyone at
any time and have the file extensi@PX. Unlike procedures written in OPL, these procedures are as fast

to call as built-in keywords. OPXs enable OPL programs to perform virtually any operation in EPOC32
which is available to a C++ program. OPX procedures are called in a similar way to user-defined OPL
procedures.

This section contains a complete reference description of OPL’s support for accessing previously created
dynamic librariesDYLS. These libraries have an object-oriented programn@®@R) user-interface and

several have been built into the Series 3c ROM for use by the ROM applications. DYLs cannot be created using
OPL.

Since a vast amount of documentation would need to be provided to describe the essential concepts of

OOP and the services available in existing DYLs, no attempt is made to supply it heféhis section simply
introduces the syntax for all the OOP keywords supported in OPL with a brief description of each. Also, OOP
terminology is used here without explanation, to cater for those who have previous experience of DYL handling
in the ‘C’ programming language.

The use ofrar and# for arguments was discussed earlier in this document in the section ‘I/O functions and
commands’. The DYL handling keywords usse and# in the same way, for example:

ret%=SEND(pobj%,method%,var pl,var p2,var p3)
This is because many DYL methods need the address of a variable or of a structure to be passed to them.

When you use a LOCAL or GLOBAL variable as tle argument, the address of the variable is used. (You
cannot use procedure parameters or field variables, for this reds@u)use a# before avar argument,
though, the argument/value is used directly, instead of its address being used.

If, for example, you need to call a method with theaddressof a long variabl@&, p2 the integer constant 3,
andp3 the address of a zero terminated sty , you could call it as follows:

s$="X"+CHR$(0) REM zero terminate
p%=UADD(ADDR(s%),1) REM skip leading count byte
ret%=SEND(pobj%,method%,a&,#3,#p%)

The address ai& is passed because there is#tn8 and the value ip%are passed directly (no address is taken)
because they are precededthy

ret%=LOADLIB(var cathand%,name$,link%) loads and optionally links a DYL that is not in the
ROM. If successful, writes the category handledathand% and returns zero. You would normally only set
link% to zero if the DYL uses another DYL which you have yet to load in which case LINKLIB would
subsequently be used. The DYL is shared in memory if already loaded by another process.

ret%=UNLOADLIB(cathand%) unloads a DYL from memory. Returns zero if successful.

(ADVANCED TOPICS [86)

OPL

LINKING A DYL

LINKLIB cathand% links any libraries that have been loaded using LOADLIB. LINKLIB is not likely to be
used much in OPL - paiek% with a non-zero value to LOADLIB instead.

FINDING A CATEGORY HANDLE GIVEN ITS NAME

ret%=FINDLIB(var cathand%,name$) finds DYL categoryname$ (including.DYL extension) in the
ROM. On success returns zero and writes the category haradithemd% . To get the handle of a RAM-based
DYL, use LOADLIB which guarantees that the DYL remains loaded in RAM. FINDLIB will get the handle of a
RAM-based DYL but does not keep it in RAM.

CONVERTING A CATEGORY NUMBER TO A HANDLE

cathand%=GETLIBH(cathum%) converts a category humbestnum% to a handle. IEathum% is zero,
this gets the handle for OPL.DYL.

CREATING AN OBJECT BY CATEGORY NUMBER

pobj%=NEWOBJ(catnum%,clnum%) creates a new object by category nundanum% belonging to the
classclnum%, returning the object handle on success or zero if out of memory. This keyword simply converts
the category number supplied to a category handle using GETLIBH and then calls NEWOBJH.

CREATING AN OBJECT BY CATEGORY HANDLE

pobj%=NEWOBJH(cathand%,clnum%) creates a new object by category hamdlthand% belonging to
the classinum%, returning the object handle on success or zero if out of memory.

SENDING A MESSAGE TO AN OBJECT
ret%=SEND(pobj%,method%)
ret%=SEND(pobj%,method%,var p1)
ret%=SEND(pobj%,method%,var p1,var p2)”
ret%=SEND(pobj%,method%,var p1,var p2,var p3)

send a message to the objeabj% to call the method numbenethod%, passing between zero and three
arguments depending on the requirements of the method, and returning the value returned by the selected
method.

PROTECTED MESSAGE SENDING
ret%=ENTERSEND(pobj%,method%)

ret%=ENTERSEND(pobj%,method%,var p1)
ret%=ENTERSEND(pobj%,method%,var pl,var p2)
ret%=ENTERSEND(pobj%,method%,var p1,var p2,var p3)

send a message to an object with protection.

Methods which return errors gavingmust be called with protection.

ENTERSEND is the same as SEND except that, if the method leaves, the error code is returned to the caller;
otherwise the value returned is as returned by the method.

Use ENTERSENDO (described next) for methods which leave but do not return a value explicitly on success.

(ADVANCED TOPICS ‘

OPL

PROTECTED MESSAGE SENDING (RETURNS ZERO ON SUCCESS)
ret%=ENTERSENDO(pobj%,method%)

ret%=ENTERSENDO(pobj%,method%,var p1)
ret%=ENTERSENDO(pobj%,method%,var p1,var p2)
ret%=ENTERSENDO(pobj%,method%,var p1,var p2,var p3)

send a message to an object with protection and guarantee that the known value zero is returned on success.
Otherwise ENTERSENDO is the same as ENTERSEND.

Methods which return errors tgavingbut return nothing (oNULL) on success must use ENTERSENDO.
Besides providing protection, ENTERSENDO also returns zero if the method did not leave, or the negative error
code if it did.

If ENTERSEND were incorrectly used instead and the method completed successfully (i.e. without leaving), the
return value would be random and could therefore be in the range of the error codes implying that the method
failed.

DYNAMIC MEMORY ALLOCATION

For each running OPL program (mroces$ the operating system automatically allocates memory. On the Series

3c, this can grow up to a maximum of 32 bytes less than 64K. On the Series 5, there are no built-in memory limits
and a module or application can use as much of the available memory as it requires. A corollary of this is that
although the use of integers were sufficient for the storage of addresses on the Series 3c, this is no longer the case
on the Series 5. Hence long integers must be used instead. See the ‘32-bit addressing’ section below.

MAXIMUM DATA SIZE IN A PROCEDURE

Although there is no built-in limit to the total amount of data in an OPL program on the Series 5, it is still not
possible to declare variables in a procedure that use in total more than 65516 bytes. This allows the largest
integer array in a procedure to have 32757 elements. This number decreases for any other variables, externals or
for procedures called from the given procedure, as they all consume some of the procedure’s data space.

The maximum for the Series 3c is about 32758 bytes of data in total per procedure.

SERIES 5 32-BIT ADDRESSING

As described above, memory addresses outside the 64K address space need to be stored in long integers. Thus all
keywords which support addresses take and return long integers on the Series 5. Note also thé whesteo

specify the address of a variable that is listed in the syntax uamgthe address is a long integer, so you would
use#taddress& . See the ‘I/O functions and commands’ section above.

(ADVANCED TOPICS ‘

OPL

To facilitate porting of OPL programs written on the Series 3c (and other earlier machines) to the Series 5, it is in
fact possible to set a flag to emulate the Series 3¢ memory modeBESig AGS 1. This will cause an ‘Out of
memory’ error if an attempt is made to obtain an address beyond the 64K limit.

If this flag is set, the Series 5 checks that the 64K limit is not exceeded when:

« the variables for a procedure are allocated, on calling any procedure. If the address of any variable in the
procedure would require more than 16 bits, the procedure will fail to be loaded and an ‘Out of memory’
error will be raised. This is evidently preferable to having, for example, p%=ADDR(i%) giving an ‘Over-
flow’ error, once the procedure has been loaded. The ideal solution is, of course, to port the program to use
32-bit addresses instead, but setting the flag is a quick solution for many applications that are known to
require less than 64K.

e the value returned by the heap allocation keywords requires more than 16 bits.

Some existing Series 3c programs may at times attempt to exceed the 64K limit and deal with the ‘Out of memory’
error. To port such programs there are two choices. Either you can

e change all integers that contain addresses to be 32-bit

or

» setthe flag that enforces the 64K limit using SETFLAGS.

Note that the use of the word “address” is in fact imprecise for the Series 5. Series 5 addresses are in fact offsets into
OPL’s variable-heap, so an address of 0 really means 0 offset relative to the base of OPL’s heap. This allows OPL
to perform the appropriate 64K limit tests. This method of addressing variables is referred to as “base-relative
addressing”.

Another potential problem may well concern you at this point. When, for example, displaying an OPL address in
some diagnostic debugging code, if a variaeor a heap cell has a base-relative offset of between 32768 and
65535, themp%=ADDR(i%) would produce an overflow error unless special measures were taken. The reason for
this is that 16-bit integers asignedin OPL, so the range is -32768 to 32767. Hence, although 32768 fits in an
unsigned16-bit integer (hex $8000) it doesn't fit intosagnedinteger. OPL gets around this problem dign-
extendinghe result of ADDR and the heap functions when 64K restriction is in force, as follows:

e if the value returned is 32768 to 65535 (hex $8000 to $ffff), OPL treats the value as signed. So $8000
becomes &ffff8000 (or -32768), and $ffff becomes &ffffffff (or -1). These values can then be assigned to
the signed p%.

e if the value is greater than or equal to 65536 (hex &10000) then it is not sign-extended and so assigning it to
p% raises an ‘Overflow’ error as required.

As mentioned above, this conversion should always be totally transparent to your program. This is possible because
the keywords that use these sign-extended addresses, all convert the value back to an unsigned 16-bit value before
use.

(ADVANCED TOPICS [89)

OPL

There is one case, however, where porting is required even with the flag set for a 64K limit. This is when the long
integer value returned by ADDR or from a heap-allocating function is passed directly into a user-defined procedure.
An OPL procedure from the Series 3c taking an address parameter will probably have been written to take a 16-bit
address. As the translator cannot necessarily know the type taken by a user-defined procedure, it cannot coerce the
type returned by these functions to match that taken by the user-defined procedure. This means that a type violation
error can be caused.

Example:
If a user-defined procedureserProc:(p%) s called as follows:
userProc:(ADDR(i%))

the 32-bit integer returned by ADDR will cause a type violation, as it will not be coerced to a 16-bit integer. The
solution is either to definaserProc: to take a 32-bit integer, or to declare the prototypaseffProc: as
userProc:(ADDR%) . Either of these would allow translator coercion. See the ‘Calling Procedures’ section of
the ‘Basics.pdf’ document and also EXTERNAL in the ‘Alphabetic Listing’ for more information on procedure
prototyping in OPL on the Series 5.

If you are porting Series 3c OPL code (or code from earlier machines) to the Series 5 without using a
SETFLAGS statement, it should be obvious that there are two points which you need to remember:

e any address variables which were previously specified as integers must be changed to long integers.

e as mentioned in the ‘Safe pointer arithmetic’ section above, UADD and USUB stuilid used when
you are using 32-bit addressing without the flag set to restrict to 64K. Use of these functions should be
replaced with ordinary long integer arithmetic.

The actual memory used by an OPL program depends on the requirements of the process and is automatically
grown or shrunk as necessary.

[] anopL process contains several separate memory areas, but the only one of significant interest to the

OPL programmer is th@PL heap used to contain the OPL variables and dynamically allocated memory
cells. The heaps of different processes are entirely separate - you need only concern yourself with the heap
used in your own process.

L] This memory is called therocess data segmeand contains all the data used by the process as well as

some fixed length data at low memory in the segment needed by the operating system to manage the
process and for other system data.

Although the data segment for an OPL process contains several components, the only component of
significant interest to the OPL programmer is phecess heapThis section describes several keywords
for accessing the heap.

The heap is essentially a block of memory at the highest addresses in a process data segment, so that the
operating system can grow and shrink the heap simply by growing and shrinking the data segment and
without having to move other blocks of memory at higher addresses in the data segment. The heaps of
different processes are totally independent - you need concern yourself only with the heap used in your
own data segment.

(AbvANCED TOPICS [60)

OPL

The heap allocator keywords are used to allocate, resize and free variable length memory cells from the OPL
heap (the process heap on the Series 3c). Cells typically range in size from tens of bytes to a few kilobytes.
Allocated cells are referenced directly by their address; they do not move to compact free space left by freed
cells.

Heap allocator keywords are:

 ALLOC allocates a cell of specified size, returning its address.

e FREEALLOC frees a previously allocated cell, which is returned to the heap.
e REALLOC changes the size of a cell, returning its new address.

* ADJUSTALLOC opens or closes a gap in the middle of a cell (useful for insertion or deletion of cell
content), changing the size of the cell as appropriate.

e LENALLOC returns the size of a cell.

Initially, the heap consists of a single free cell. After a number of calls to allocate and free cells, the heap
typically consists of ranges of adjacent allocated cells separated by single free cells (which are linked). If a cell
being freed is next to another free cell the two cells are automatically joined to make a single cell to prevent the
free cell linked list from growing unnecessarily.

Writing beyond the end of a cell will corrupt the heap’s integrity. Such errors are difficult to debug because
there is no immediate effect - the corruption is a “time bomb”. It will eventually be detected, resulting in the
process exiting prematurely by a subsequent allocator call such as FREEALLOC.

The heap is not fixed in size. The operating system can grow the heap to satisfy allocation requests or shrink it to
release memory back to the system.

Allocation of cells is based on “walking” the free space list to find the first free cell that is big enough to satisfy
the request. If no free cell is big enough, the operating system will attempt to grow the data segment to add more
free space at the end of the heap.

If there is no memory in the system to accommodate growth or, on the Series 3c and Siena, if the data segment
has reached its maximum size of (approximately) 64K, the allocate request fails. There are few circumstances
when an allocate request can be assumed to succeed and calls to ALLOC, REALLOC and ADJUSTALLOC
should have error recovery code to handle a failure to allocate.

There are cases in which programs allocate a sequence of cells which must either exist as a whole or not at all. If
during the allocate sequence one of the later allocations fails, the previously allocated cells must be freed. If this
is not done, the heap will contain unreferenced cells that consume memory to no purpose.

When designing multi-cell sequences of this kind, you should be mindful of the recovery code that must be
written to free partially built multi-cell structures. The fewer the cells in such a structure, the simpler the
recovery code is.

(ADvANCED TOPICS [61)

OPL

The free space in the heap is normally fragmented to some extent; the largest cell that can be allocated is
substantially smaller than the total free space. Excessive fragmentation, where the free space is distributed over a
large number of cells - and where, by implication, many of the free cells are small - should be avoided because it
results in inefficient use of memory and reduces the speed with which cells are allocated and freed.

Practical design hints for limiting internal fragmentation are:

* Avoid using the heap for small, highly transient data structures for which ordinary variables are adequate.
High frequency cycling through allocate and free pairs, “churns” the heap and leads to a long free space list.

* When you have a large number of variable length data structures - particularly when they are frequently
resized, “granularise” them (i.e. round the allocation up to a multiple of some reasonable value) so that you
decrease the chance of leaving small, unusable free space cells.

Although a small number of gaps are not too serious and should eventually disappear in most cases anyway, the
new heap allocating keywords provide ample opportunity to fragment the heap. Provided that you create and
free cells in a careful and structured way, where any task needing the allocator frees them tidily on completion,
there should not be a problem.

[] The OPL runtime interpreter, which actually runs your program, uses the same data segment and heap as

your program and makes extensive use of the heap. It is very important that you should understand the
interpreter’s use of the heap - at least to a limited extent to avoid substantial internal fragmentation as
described above.

Whenever an OPL procedure is called, a cell is allocated to store data required by the interpreter to manage
the procedure. The same cell contains all the variables that you have declared in the procedure. On the
Series 3¢, when cacheing is not being used, the same cell also contains the translated code for the
procedure which is interpreted. When the procedure returns (or implicitly returns due to an error) the cell is
freed again back to the heap. This use of the heap is very tidy - adjacent cells are allocated and freed with
little opportunity for leaving gaps in the heap.

Unfortunately, various other keywords also cause cells to be allocated and these can cause fragmentation.
For example, LOADM, CREATE, OPEN etc. all allocate cells; UNLOADM, CLOSE etc. free those cells.

If a procedure is called which uses CREATE to create a data file, the procedure cell is allocated, followed
by the CREATE cell and the procedure cell is then freed when the procedure returns. The heap structure
therefore contains a gap where the procedure cell was, which remains until all cells at higher addresses are
freed.

[] onthe Series 5, the OPL runtime interpreter uses two separate heaps: one for process management and one
for user variables and allocated cells. LOADM, CREATE, OPEN, etc use the process management heap.
This ensures that the use of these keywords will not cause fragmentation. It is therefore not necessary for
you to understand the interpreter’s use of the heap.

(AbvANCED ToPICS [62)

OPL

Using the allocator is by no means simple in OPL since the data in an allocated cell usually has to be read or
written in OPL using the PEEK and POKE set of keywords which are intrinsically subject to programming error.
OPL does not provide good support for handling pointers (variables containing addresses), which are basic to
heap usage, nor for complicated data structures, so that it is all too easy to make simple programming errors that
have disastrous effects.

For these reasons, you are recommended to use the heap accessing keywords only when strictly necessary
(which should not be very often) and to take extreme care when you do use them. On the other hand, for
programmers with previous experience of dynamic memory allocation, the heap allocation keywords will often
prove most useful.

A few common instances where the allocator might be used are:

* when the amount of data to be stored is variable or cannot be determined at the time of writing the program.
Without using the allocator, you would have to declare a large array to hold the data always even when it
turns out that only a few bytes are needed in a particular case. Using the allocator allows you to grow the
cell containing your data as and when required.

* the amount of data may be specified in a file or by the user of the program. Once again, you would need to
declare a possibly unnecessarily large array to cope with all allowed cases.

e asystem of library procedures might use a common cell, usually caltetdral block to store common
data. You could have one procedure creating the cell and initialising data in it, other procedures in the
system could be passed the address of the cell, using and possibly updating the data in it, and finally a
further procedure could free the cell.
This concept will be familiar to you if you have used handles for the I/O keywords, where the handle
references a cell used internally by the 1/0 system.
If you did not use the allocator in this case, you would probably need to declare a global array in the
procedure calling the library procedures, with the disadvantages that the name and size of the array would
need to be fixed for all time even when a better alternative mechanism has been devised for the library code
with different data requirements.

 ADJUSTALLOC allows you to insert or remove data at the start or in the middle of data that has previously
been set up. With an array, you would need to copy each element to the next or previous element to make or
close a gap.

On the Series 5, ALLOC, REALLOC and ADJUSTALLOC allocate cells that have lengths that are the smallest
multiple of four greater than the size requested. All of these raise errors if the cell address argument is not in the
range known by the heap. The same address checking is done for peeking and poking, but note that OPL on the
Series 5 allows the addresses of the application-specific SIBO magic statics DatAppl to DatApp7 (hex 28 to 34
inclusive) to be used for compatibility.

ALLOC, REALLOC and ADJUSTALLOC return a long integer value, so that a request can be made to allocate a
cell of any length within memory constraints.

See also sections above for discussion of 32-bit addressing.

(ADvANCED ToOPICS [63)

OPL

[] Note that in the sections which follow, Series 5 32-hit addressing is assumed. If you are using a Series 3¢, you

can substitute integers for long integers, so for example the usage of ALLOC becomes,
pcell%=ALLOC(size%) , i.e. %rather thar& However, using long integers will make any porting to a
Series 5 machine in the future easier.

ALLOCATING A CELL

Usepcell&=ALLOC(size&) to allocate a cell on the heap of a specified size returning the pointer to the cell
or zero if there is not enough memofne new cell is uninitialised- you cannot assume that it is zeroed.

FREEING AN ALLOCATED CELL

UseFREEALLOC pcell& to free a previously allocated cell@tell& as returned, for example, by ALLOC.
Does nothing ipcell& is zero.

CHANGING A CELL’S SIZE

Usepcelln&=REALLOC(pcell&,size&) to change the size of a previously allocated cell at address
pcell& tosize& , returning the new cell address or zero if there is not enough memory. If out of memory, the
old cell atpcell& is left as it was.

If successfulpcelln& will not be the same gxell& on return only if the size increases and there is no free
cell following the cell being grown which is large enough to accommodate the extra amount.

INSERTING OR DELETING DATA IN CELL

Usepcelln&=ADJUSTALLOC(pcell&,offset&,amount&) to open or close a gapdifset& within

the allocated celpcell& returning the new cell address or zero if there is not enough meofifsst& is 0

for the first byte in the cell. Opens a gapiifiount& is positive and closes it if negative. The data in the cell is
automatically copied to the new position.

If successfulpcelln& will not be the same gxell& on return only ilamount& is positive and there is no
free cell following the cell being adjusted which is large enough to accommodate the extra amount.

FINDING OUT THE CELL LENGTH
Uselen&=LENALLOC(pcell&) to get the length of the previously allocated ceppcdll&

EXAMPLE USING THE ALLOCATOR

This example illustrates the careful error checking which is essential when using the allocator. RAISE is used to
jump to the error recovery code.

If you cannot understand this example it would be wise to avoid using the allocator altogether.

] As above, note that Series 5 32-bit addressing is assumed. If you are using a Series 3c, you could substitute
integers for long integers, so for example the usage of ALLOC becpoa8o=ALLOC(size%) ,i.e.%

rather thar.
LOCAL pcell& REM pointer to cell
LOCAL pcelin& REM new pointer to cell
LOCAL p& REM general pointer
LOCAL n% REM general integer
ONERR el

CADVANCED TOPICS ‘

OPL

pcell&=ALLOC(2+2*8)

IF pcell&=0
RAISE -10

ENDIF

POKEW pcell&,2

POKEF UADD(pcell&,2),2.72
POKEF UADD(pcell&,10),3.14
pcelln&=REALLOC(pcell&,2+3*8)
IF pcelln&=0

RAISE -10
ENDIF
pcell&=pcelin&
n%=PEEKW(pcell&)
POKEF UADD(pcell&,2+n%*8),1.0
POKEW pcell&,n%+1
pcelln&=ADJUSTALLOC(pcell&,2,8)
IF pcelln&=0

RAISE -10
ENDIF
pcell&=pcelln&
POKEF UADD(pcell&,2),1.0
POKEW pcell&,4

REM holds an integer and 2
REM 8-byte floats initially

REM out of memory; go to el::

REM store integer 2 at start of cell
REM i.e. no. of floats
REM store float 2.72
REM store float 3.14 ...
REM space for 3rd float

REM out of memory

REM use new cell address
REM no. of floats in cell
REM 1.0 after 3.14
REM one more float in cell ...
REM open gap before 2.72

REM out of memory
REM use new cell address

REM store 1.0 before 2.72
REM 4 floats in cell now ...

p&=UADD(pcell& LENALLOC(pcell&)) REM byte after cell end

p&=USUB(p&,8)
POKEF p&,90000.1
RAISE 0

el:

FREEALLOC pcell&
IF err<>0

ENDIF
RETURN ERR

REM address of final float
REM overwrite with 90000.1
REM clear ERR value
REM free any cell created

REM display error message etc.

CADVANCED TOPICS ‘

OPL

INDEX

SYMBOLS

symbol 34
@ symbol 3
32-bit addressing 58

A

ADDR 60
ADJUSTALLOC 61, 64
alarms 50, 53
ALLOC 61, 64
ALM: device 50
APP 7, 15
APPENDSPRITE 28
Apple Macintosh
file specifications 6
application information file 8
asynchronous I/O requests 38
cancelling 40
example 41
waiting for completion 40
auto switch-off 22

B

bitmaps
asicons 8, 20
filenames 5

C

CACHE 3, 23
CACHEHDR 25
cacheing procedures 2, 23
CACHEREC 26
CACHETIDY 23, 25
calculator memories 21
CALL 22, 31
cancelling an asynchronous request 40
CAPTION 8
CHANGESPRITE 29
CLOSESPRITE 29
CMD$ 9, 16
CREATE 14
CREATESPRITE 28
cursor position

reading 46

D

data file
advanced information 54
filenames 5
database information 54
directories 5
documents 14
‘Does not exist’ 4
DRAWSPRITE 29
drives 3, 5
DTMF dialling 51
DYL handling 56
dynamic libraries 56

E
‘End of file’ 36
ENDA 7, 15

ENTERSEND 57
ENTERSENDO 58
ESCAPE OFF 11
events 9, 17
pointer 10
EXT 16
extensions, on filenames 4, 5

F

‘File isinuse’ 4
filenames 4, 5
extensions 4, 5
filing system 3
FINDLIB 57
FLAGS 7, 8, 11
folders 3
current folder 4
foreground/background 22
FREEALLOC 61, 64

G

GETCMD$ 10, 17
GETEVENT 17, 32
GETEVENT32 9, 31
GETEVENTA32 9, 31, 38, 40
GETEVENTC 40

GETLIBH 57

gSAVEBIT 14, 20

OPL

H

heap allocator 61
help
launching 11

I/O functions 33
asynchronous requests 38
closing a file 36
error handling 33
example 37
opening a file 34
positioning in a file 37
reading a file 36
status words 39
writing to a file 36

I/O semaphore 39

ICON 8, 16

INI file 9

IOC 38, 40

IOCANCEL 40

IOCLOSE 36

IOOPEN 34

IOREAD 36

IOSEEK 37

IOSIGNAL 39

IOW 46

IOWAIT 39, 41

IOWAITSTAT 40, 41

IOWAITSTAT32 40

IOWRITE 36

IOYIELD 41

K

KEYA 38, 40

KEYC 40

keypresses, recognising 9, 17
keys pressed down 31

L

launching help files 11
LENALLOC 61, 64
LINKLIB 57

LOADLIB 56

LOADM 1, 2

LOC:: in full filenames 5
LOCK 14, 20

M

MO to M9 21
masks
inicons 8
memory allocation 58
memory usage 60
MKDIR 4, 6
modules
calling other modules 1
loading 1
running 21
unloading 2

N

NEWOBJ 57
NEWOBJH 57
non-document files 10

O
ODBINFO 54
OPAs 7

‘Out of memory’ 23, 59
‘Overflow’ 59

P

PARSES 4, 6
PATH 16
PEEK functions 63
plain text 37
PLAYSOUNDA: 38, 40
pointer arithmetic 6
POINTERFILTER 10
POKE commands 63
polling 41
porting

Series 3c to Series 5 59, 60
POSSPRITE 29
procedures

calling 1

calling by strings 3

in other modules 1
programs 1

R

REALLOC 61, 64
‘Record too large’ 36
REM:: in full flenames 5
RMDIR 4, 6
RUNAPP&: 11

OPL

S

SCREENINFO 46
semaphores 39
SEND 57
SETDOC 14
SETFLAGS 59
SETNAME 20, 21
SETPATH 4, 6
sign-extending 59
SND: device 51
sound 51
speed
cacheing procedures 2
sprites 27
status words 39
polling 41
STATUSWIN 21
STOPSOUND&: 40
System screen
compliance 10
OPAs and the 7, 15, 16
system screen
OPAs and the 7

T

TESTEVENT 9, 17
text window 46
toolbars

applications and 10
TYPE 15, 16, 21

U

UADD 6
UIDs

OPL application 7
UNLOADLIB 56
UNLOADM 2
USUB 6

W

wait handlers 41

OPL

USING OPXS ON THE SERIES 5

The Series 5 uses language extensions provided in separate DLLs written specially for OPL
support. These DLLs have the file extension OPX.

It is not within the scope of this User Guide to cover how to develop OPXs yourself, as it re-
quires knowledge of the C++ language. If you require details of how to do this, you should
obtain a copy of the EPOC32 C++ Software Development Kit (SDK) from Psion Software plc.

OPX procedures for handling the following are provided in the ROM:

Date / time extras
e System controls
e Bitmaps

e Sprites

e Database extras

e Printing

PSiON

0 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS
OPX OVERVIEW L.ttt ettt s et e e e e e eeaneeees 1
OPX HEADER FILES ..oeiiiiiiieee ettt ettt et e e e e 1
CALLBACKS FROM OPX PROCEDURESccciiiiiiiiiiiiiitiieeeeiitee ettt 2
OPXS INCLUDED IN THE SERIES 5 .. eeiiiiiieeee ettt 2
DATE OPX . 3
DTNEWDATETIMESC: ittt e e e e s nnnes 3
DTDELETEDATETIME: ittt e e s enaaae s 4
DITYEARG: (et e e e 4
DTMONTHE& .t ba s e e e e e s nae e e e e e e s eannnnes 4
DITDAY & it e e e ar e e e e e e s naes 4
DTHOURK: ..ttt e e e s s e e e e e s s aaae s 4
D TMINUTE: .ttt s aa e e e e s aaa s e e e e seeeeeseannns 4
DTSECOND: ittt e e e e s e e e e e e s snanaes 5
DTMICROK: .ttt e e e ra s e e e e e s aaan e e e e e e s anans 5
DITSETYEAR: et s s baa e e e e e aaeee e e s annes 5
DTSETMONTHE: Lot e e s naaae s 5
DITSETDAY: e e e a e e e e e s na e e e e e e s aaae s 5
DTSETHOUR .. s e e e e e e e s e eee e s annes 5
DTSETMINUTE: ..ottt e e e e a e e e s nanees 5
DTSETSECOND ...ttt s s e e e snba e e e s see e s annns 5
DTSETMICRO : ...ttt e e e s s e e e e e s nanae s 6
DI TNOW: oo e e e e a e e e e e e s anaa e e e e e e s s annns 6
DTDATETIMEDIFF: o s aae e sanaes 6
DTYEARSDIFF&: woiiiiiiiiiiiiiii it aa e e e s naaae s 6
DTMONTHSDIFF&: woiiiiiiiiiiiiiiiiiii e e aae e e s 6
DTDAYSDIFF&: ottt e s s sraaae s 6
DTHOURSDIFF&: coiiiiiiiiiiiiiii ittt e e e s arae e e e s e snnanes 7
DTMINUTESDIFF&: ceiiiiiiiiiiiiiiiiiiiiee ittt e e saa e e e e s s annns 7
DTSECONDSDIFF&: .iiiiiiiiiiiiiiiiiiice ettt aaae e e e e s nnanes 7
DTMICROSDIFF&: woiiiiiiiiiiiiiii i e e e e s 7
DTWEEKNOINYEARG: .ttt e e s e e e e s nnnes 7
DTDAYNOINYEARG: .ottt aaa e e e s aaaee e 8
DTDAYNOINWEEKE: «..cvviiiiiiiiiiiiiiccceeiiiicee ettt iaae e e e s snnanes 8
DTDAYSINMONTHE&: .ttt ra e e e naaee 8
DTSETHOMETIME: .ottt arae e e e e s nnanes 8
LCCOUNTRYCODES: «..uuiiiiiiiiiiiiiiiciceeiiiteee ettt are e e s s anae e e e s s nnnnes 8
LCDECIMALSEPARATORS: ...ttt ettt st senee e e 8
LCSETCLOCKFORMAT: L.ttt e s aa e e e enaae s 8
LCCLOCKFORMATE: .ttt e e nas e e e e s s 8
LCSTARTORWEEK: ...ttt s e 8
LCTHOUSANDSSEPARATORS: ...coniieiiiieiieeteeetteetee ettt et 9
SYSTEM OPX .ottt e s e aaa s saa e e e e s s nnes 9
BACKLIGHTONG: ittt aa e e 10
SETBACKLIGHTON: ...ttt aaa e 10
SETBACKLIGHTONTIME: ...iiiiiiiiiiiiiii it 11
SETBACKLIGHTBEHAVIOR: ..ottt 11
ISBACKLIGHTPRESENT&: ..eviiiiiiiiiiiiiiiiiiiiice et 11
SETAUTOSWITCHOFFBEHAVIOR:oiiiiiiiiiiiiiiiiiiiiicce e 11

USING OPXS)
4

OPL

SETAUTOSWITCHORFRFTIME: L..oiiiiiiiiiiiiiee ettt ettt e e e e 11
SETACTIVE: <.ttt ettt e e sttt e e e sttt e e e s bt b e e e e e s asbeee snrneneeeeeens 11
RESETAUTOSWITCHOFFTIMER: ...cciiiiiiiiiiiiee ettt ettt st e e e e s 11
SWITCHOFF: ittt e e ettt e e e sttt e e e s e eabba e e e e e e eemaaneeeeens 11
SETSOUNDENABLED: ...ttt ettt e e s e e e s e 12
SETSOUNDDRIVERENABLED: ...ttt ettt e e 12
SETKEYCLICKENABLED : ettt ettt e st e e e aae e e 12
SETPOINTERCLICKENABLED : «...ctiiiiiiiitee ettt ettt 12
SETDISPLAYCONTRAST: ..ttt e ettt e e e ettt e e e e et ee e e e eamaneeeees 12
MAXDISPLAYCONTRAST&: ..ttt ettt ettt ettt e e et e e e e eananeeeees 12
ISREAD ONLY & ettt ettt e e e sttt e e e e snaaae e e e e eeaanae semrnneeae 12
ISHIDDENG: ettt ettt et ettt e e sttt e e e e a e e e e san et e e e een e eemrnneees 12
ISSYTEME: ettt ettt ettt et e s ettt et e e e et e e e e e eata e et e areneeeeeens 12
SETREADONLY .ttt ettt ettt e e e et e e e e e entae e e e e e e aamaneeeeas 13
SETHIDDENFILE: ...ciiiiiiitteee ettt ettt ettt e s ettt e e e embaeeeeaneeeeeens 13
SETSYSTEMEILE: ..ottt ettt e e e ettt e e e e s e e e arneee e 13
VOLUMESIZEK: ettt ettt e ettt e e s ettt e e e e s tr e e e e s esan e e eeeaanne 13
VOLUMESPACEFREE&: .cceiiiiiiiiiiiie ittt ettt ettt e e e e ee e 13
VOLUMEUNIQUEID & eeiiiiiiiiitieee ettt ettt ettt e e e sttt e e e et e e e e eamaneeeeas 13
IMEDITATYPEK: ettt ettt e e ettt e e e sttt e e e e eeabaa e e e e e eemaaneeeeean 14
GETFILETIME: ettt ettt e ettt e e e e ettt e e e e et e e e e esaanae eeeeamrnneees 14
SETFILETIME: .ttt e ettt e e e e et e e e e e s s eeeeeens 14
DISPLAYTASKLIST: ettt ettt e e sttt e e e sttt e e e e s eaabe e e e e e e aneeeeeens 14
SETCOMPUTEMODE: ...ciiiiiiiiiiiieeeetee ettt ettt et e et e e e e e e e e e eanaeee e 14
RUNAPP & ettt ettt e sttt e e s ettt e e e e e ettt e e e e e eansraeeeeeeeeens 15
RUNEXE& S ccciiiiiiiiiiiiiiiiiiiee et e e et e s esiaaas 16
LOGONTOTHREAD: ittt ettt et e s e e eata e e e e e smraeeeeeeeena 16
TERMINATECURRENTPROCESS: ...ceiiiiiiiitieeeeeiettee ettt ettt e e s 16
TERMINATEPROCESS:ceiiiiiititeee ettt ettt e e s et e e e e eananeeee s 16
KILLCURRENTPROCESS:etiiiiiiiiieee ettt ettt ettt e e st e e e e san e e e e e eeeee 16
KILLPROCESS: ettt ettt e e e e ettt e e e e e se e ennneeee 16
PLAYSOUND <.ttt e e e sttt e e e sttt et e e e e e anraeeeeeeenaane 16
PLAYSOUNDA ..ottt ettt et e et e e e s e ebaa e e e e e e snrraeeeeeeeaaas 17
STOPSOUNDIK: ettt ettt et e e e ettt e e e ettt e e e eeabae e e e e e eeeamaneeeees 17
IMOD & ettt ettt e e ettt e e e ettt e e e e et e e e e e e ranreeeeeas 17
KORE: ettt et e e ettt e e e ettt e e e ettt e e e e e e e e e e e eaaraneeeeeeas 17
LOADRSC: ettt ettt ettt e sttt e e e st e e e et saatneeeeeeas 17
UNLOADRSC : .ttt ettt e e e ettt e e e e etat e e e e e s mbaaeeeeeeeeanneeee 17
READRSCS: .ottt ettt ettt et et ettt e e st e e e a bt e eub e e ea b e e eubeeehb e e bte e bt e et beeenbteeneee 18
READRSCLONGE&: .cteiiiiiititeeee ettt ettt ettt ettt et e e s ettt e e e e e sairtaeeeeeesanraeeeeeeeanas 18
CHECKUIDS -ttt ettt ettt et e st e st e e bt e et e e e bt e e sateesabeesateeeabeesabeeenbeeeneens 18
SETPOINTERGRABON: L..ceiiiitittte ettt ettt e sttt e e e e seban e e e e e seareeeeas 18
MACHINENAMES: ...ttt ettt ettt e et e e bt e sab e e st e e sabeeenbeeebeeenaeeenaees 18
MACHINEUNIQUEID: L.eiiiiiiiiiiiiiee ettt ettt e e e e e e eaneeeees 18
END TASK&: .ttt ettt e e e ettt e e e et a et e e e e et e et e e e e e e et e e enne e 19
I LTASKE: ettt et ettt e e e sttt e e e s et e et e e e e e saaba et e e eesnnraneeeeeens 19
GETTHREADIDFROMOPENDOC&: «...vviitieiiiiiiiieeeeeeiiteeee ettt e et e e e e e earaeeee e e eeeeianeeeees 19
GETTHREADIDFROMAPPUIDE: .ttt 19
SETFOREGROUND ...ttt ettt ettt e e et e e e e eaneeeees 20
SETBACKGROUND ...ttt ettt e e et e e e et e e e e eananeeeees 20
SETFOREGROUNDBYTHREAD: ...ttt ettt e 20

USING OPXS)
4

OPL

SETBACKGROUNDBYTHREAD: ..ttt e e 20
GETNEXTWINDOWGROUPNAMES:eeitiiititiit ettt ettt ettt ettt e s eebee e 20
GETNEXTWINDOWID: «.eiiiitieet ettt e et e e e e sarae e e e e e eamaneeeees 20
SENDKEYEVENTTOAPP&: ...ttt e e e ettt e e e e e anaeeeeees 21
IRDACONNECTTOSEND&: .ceiiiiiiiiitiitee ettt ettt ettt ettt e e s e st ee e e e e snraeeeeeeeenas 21
IRDACONNECTTORECEIVE: «...eeiiiiiiteiiiitete ettt ettt e e s et e e e e sennnee 21
IRDAWRITE: ettt ettt e e e sttt e e e s et e et e e e e airba e e e e e e saanrneeeeeeeeens 21
IRDAREADS: ...ttt ettt et st e s ab e at e et e e bt e e bt e e bt e eabeesabeeeabeesateesatbeeenbeeennee 22
IRDAREADA ...ttt ettt e e e ettt e e e e ettt e e e e s e taae e e e e e eearneees 22
IRDAWAITFORDISCONNECT: ettt e e e e s e e e e 22
IRDADISCONNECT: ..ttt ettt ettt e e s et e e e e e eartateeeeesanraeeeeeesanas 22
MAINBATTERY STATUSE: ittt ettt e e e et e e e e eaianeeeees 22
BACKUPBATTERYSTATUSS: ittt ettt et e s et e e e e sennaee 23
CAPTUREKEY & ottt e bttt e e e ettt e e e e et e e e e e e eanee sarneeees 23
CANCELCAPTUREKEY: ittt ettt ettt e e e e et e e e e e eananeeeees 24
SETPOINTERCAPTURE: ...ceiiiiiiiittte ettt ettt ettt e e st e e e e e earae e 24
CLAIMPOINTERGRAB: ettt e e e e et e e e e eananeeeees 24
OPENFILEDIALOGS: .ttt ettt ettt et sttt et e at e e sbe e et e e bt e s bt e sabeesabeesabeenaneeens 25
CREATEFILEDIALOGS: ..ottt ettt ettt st ettt et sat e st e s bt e e bt e ebeeesaeeenanes 25
SAVEASFILEDIALOGS: ...ttt ettt ettt ettt et ettt et ettt st e st e e sbteeebeeenaaeesaeeeeneee 25
SPRITE AND BITMAP OPX ...ttt ettt e et e e e naaee e e 26
BITMAPLOAD K .ceiiiiiitiieeeeeette ettt ettt e e e eeatae e e e e e sananeeeeeeseannnee 26
BITMAPUNLOAD: ...ceiiiiititeeeeeet ettt e e ettt e e e e eta et e e e e smraeeeeeeeeaas 26
BITMAPDISPLAYMODEG&: ...ccciiiiiiiiiiieiiiiiete ettt ettt e e et e e e s e senan e e e e e sennnee 26
SPRITECREATEG: «.eetttee ettt ettt ettt e e ettt e e e et e e e e e eantat e e e e e eeananeeeeas 26
SPRITEAPPENDY ...ttt ettt ettt e e e sttt e e e et e e e e esasne smrneeeee 27
SPRITECHANGE: ...ttt e et e e e e et e e e e naeeeeees 27
SPRITEDRAWV: ...ttt ettt ettt e e sttt e e e s ata et e e e semaneee ranneeeeeens 27
SPRITEPOS: ..ttt ettt ettt e e sttt e e s aba e e e e sanae sanreneeeeeens 27
SPRITEDELETE: ...ttt ettt et e e ettt e e s ettt e e s eaaee s eemrneeeee 27
SPRITEUSE: ...ttt ettt e e e ettt e e e e st e e e e e s bbbt et e e e et e e e eeamnnneees 28
DATABASE OPX .ttt ettt e e sttt e e st e e e e s treeeeeeas 28
DBADDFIELD: ...etitiiiieetee ettt e et e e st e e e e anee e 28
DBADDFIELDTRUNGC: L.iiiiiiiiiitieeeettt ettt ettt e ettt e sttt e e e eaaae e e e e e emaneeeeeas 29
DBCREATEINDEX: 1ttt ettt e e e sttt e e e e sbn e e e e e snmnaneeee 29
DBDELETEKEY: it e e e e e e e e e e e e e e e e e s saaaaaaaaees 29
DBDROPINDEX: .ceiiiiiititteeeeett ettt ettt e e e ettt e e e e ettt e e e e seabae e e e e e e earaaees 30
DBGETFIELDCOUNTE: weveiiiiiiitteeeieieteee ettt ettt ettt e e e e saaee e e e e saabnneeeeeeeanneeeens 30
DBGETFIELDNAMES: ...ttt ettt ettt e sat e ettt et e et eeabeeembeesabeesabeesbeeens 30
DBGETFIELDTYPEK: «eeeviieeiiiiiiteee ettt ettt ettt e e e et e e e e eban e e e s eennasaneeae 31
DBISDAMAGED & .ceeiiiiiiiiieeee ettt e e sttt e e e et e e e e s raeeeee e e 31
DBISUNIQUEK: .ceeeeiiiiiiiteeeee ettt ettt e ettt e s ettt e e s eabae e e e e semaaeeeesaeeeeeens 31
DBMAKEUNIQUE: ...cciiiiiiiiiitieeeett ettt ettt e s ettt et e e e et e e e e e sanraeeeeeesanas 32
DBNEWKEY & ittt e 32
DBRECOVER: ...ttt et e e e ettt e e e e ettt e e e s eeababteee sarneeeeeens 32
DBSETCOMPARISONE: <.ttt e e ettt e e e e e ettt e e e e snraeeeeeeeeaas 32
PRINTER OPX ..ttt ettt e e e ettt e e e e ae e e e e eearaee s eemenneees 32
SENDSTRINGTOPRINTER: Lcceiiiitet ettt ettt e et e e e e e e e s eeanaeee 33
INSERTSTRINGE: ...ciiiiiiiitiieeee ettt ettt e e e ettt et e e e eeata et e e e e e saimaneeeeeesaaannnee 33
SENDNEWPARATOPRINTER:otttiiiiiiitiee ettt ettt e e e e e e eaneeeees 33
INSERTINEWPARA: ..ottt ettt e e s e ettt e e e et e e e e e sanrreeeeeeeeaas 33

USING OPXS)
4

OPL

SENDSPECIALCHARTOPRINTER: ...ttt ettt e 34
INSERTSPECIALCHAR: ...ttt ettt e et e e e e ettt e e e e e snraeeeeeeeeaa 34
SETALIGNMENT L.ttt ettt e e ettt e e e e et et e e e e e ettt e e e e e earaneeeeas 34
INITIALISEPARAFORMAT: L.ciiitiete ettt ettt e e e ettt e e e e et e e e e e sennnee 35
SETLOCALPARAFORMAT: ...ttt ettt e e e ettt e e e e eananeeee s 36
SETGLOBALPARAFORMAT: ...ttt ettt e e e e ean e 36
REMOVESPECIFICPARAFORMAT ...ceiiiiiititee ettt ettt ettt e e e e s 36
SETFONTNAME: <.ttt e e et e e e e ettt e e e e ananeeeees 36
SETFONTHEIGHT: ...ttt e e ettt e e e e e enbae e e e e e e earaneeeees 36
SETFONTPOSITION: L.ttt ettt e ettt e e e e et e e e e sabbt et e e e esanaaeeeeeeens 37
SETFONTWEIGHT: <.ttt ettt e e ettt e e e et e e e e emaaeeneeeee 37
SETFONTPOSTURE: ..ttt ettt e et e e e et e e e e e 37
SETFONTSTRIKETHROUGH: L...oiiiiiiiiiiiiee ettt et 37
SETFONTUNDERLINE: ...ttt ettt e e ettt e e e s aaae e e e e saneeee 37
SETGLOBALCHARFORMAT: Lttt et e e e e e e e s emnaee 38
REMOVESPECIFICCHARFORMAT: ...ciiiiiiiitti ettt ettt e e e e 38
SENDBITMAPTOPRINTER: ...ttt et e e e e ean e 38
INSERTBITMARP: L.ttt ettt e e e e ettt et e e e ettt e e e e e sannaeeeeeesenas 38
SENDSCALEDBITMAPTOPRINTER: ...ttt ettt eee e 38
INSERTSCALEDBITMAP: L..ciiiiiiittee ettt e e e et e e e e e sennnee 38
PRINTERDOCLENGTH&: «.eitiitieet ettt ettt ettt e e et e e e e satae et e e e eeennaneeeees 38
SENDRICHTEXTTOPRINTER:oiiiiiiiiiititee ettt ettt ettt e e e e eaan e eees 39
RESETPRINTING: ...etttitittttee ettt ettt e e e ettt e e s ettt e e e e s earba e e e e e e anae e e e e mrnneeae 39
PAGESETUPDIALOG: ..cciiiiiiiiiiiieee ettt ettt e e e e st e e e e eananeeeees 39
PRINTPREVIEWDIALOGE: «..eiiiiiiiiiiiiietee ettt ettt et e e e e ettt e e e e eaae e e 39
PRINTRANGEDIALOG: ...ttt ettt ettt e e e et e e e e e ennaeeeee e e 39
PRINTDIALOG: ...ttt ettt e e e et e e e e e e aara bt e e e e e sanmraeeeeeeeanas 39
SENDBUFFERTOPRINTER: ettt ettt e et e et e e e nnae e 39
IN D EX e ettt e e 40

USING OPXS)
4

OPL

A maximum of 255 OPXs can be used in any one OPL module and any OPX may have up to 65535 procedures
defined in it. If these values are exceeded then errors are reported at translate-tinee' Esears. pdf’
document).

The OPX supplier provides an OXH header file. This provides the declaration for the OPX, specifying its name
UID and version number (see below), followed by its procedure prototypes.

The newINCLUDE keyword is used to include these header files. Alternatively, the declaration can be inserted
directly into the OPL file, i.e.

DECLARE OPX <opxName>,<uid>,<version>
<protoTypel>: <ordinall>
<protoType2> : <ordinal2>

END DECLARE
where,

<name> is the name of the OPX without the .OPX extension. The OPX is storé@ystem\Opx\ folder
on any drive, with the drives scanned frfmto A: and therZ: if no path is specified. This allows ROM
OPXs (inZ:) to be overridden if required.

<uid> is the UID of the OPX. The specification of a UID as well as a name guards against OPXs with the same
name being confused, which could otherwise cause serious problems. The UID is checked on loading the OPX
and a ‘Not supported’ error will result if the UIDs in the header file and in the OPX itself do not match.

<version> is the version number of the OPX. The version nhumber of an OPX will be increased when any new
procedures are added. OPL will refuse to load an OPX which reports that it can’t support the version number given
in the declaration. The version number expressed in hex is e.g. $0100 to represent version 1.00, $0102 for version
1.02 etc. In general, an OPX supplier will increment the 2 low digits (the so-called minor version number) for
backward compatible changes, and will increment the 2 high digits for major incompatible changes.

<prototype> specifies the name, return type and parameters of an OPX procedure in the same way as for an
OPL procedure when using the EXTERNAL keyword. Numeric parameters to OPX procedure can bbypassed
referenceusing BYREF. This means that the value of the variedebe changed by the OPX procedure. The

OPX procedure prototype is followed additionally by a colon and then the

<ordinal> specifies the ordinal number of the procedure in the OPX itself. This is used to call the correct
procedure, i.e. the OPXlimked by ordinal

If an OPX procedure name clashes with one of your OPL procedures, or with that of another OPX procedure, you
can make a copy of the OXH file and change the name of the offending procedurest thé return type,
parameter list or ordinal. You should then include this new OXH file in your module and the new name can then be
used to refer to the procedure in your code.

For example, consider the OPX declaration,

DECLARE OPX XXOpx,XXOpxUid&,XXOpxVersion&

XXClose%:(id&) : 1

ProcWithLongParam:(aLong&) : 2

AddOneToParams:(BYREF parl%,BYREF par2&, BYREF par3) : 3
END DECLARE

(usinG opxs [[1)

OPL

If a short integer is passed ®rocWithLongParam: , the translator will automatically convert it to a long
integer.

The AddOneToParams: procedure adds one to each of the parameters. This is possible because the parameters
are passed by reference using BYREF. Parameters passed by reference must be variables rather than constant
values because the OPX will write back to the variable. The variable type must always be the same as given in the
declaration.

CALLBACKS FROM OPX PROCEDURES

An OPX procedure can call back to a module procedure. This is often useful if the OPX needs some information
that is not known when the OPX procedure is initially called, or if it requires a large amount of data which needs
to be sent piecemeal.

The OPX provider will specify the exact form of the procedure which you must provide.

OPXS INCLUDED IN THE SERIES 5

Procedures for handling the following are provided in the ROM:
. Date / time extras

. System - a variety of procedures for system control, e.g. backlight control, sound control, file and applica-
tion control, etc.

. Bitmaps - for use with buttons and Sprites.
. Sprites

. Database extras

These OPXs and their OXHs have default paths in the RO but the full path for any OPX may be supplied.
These aréSystem\Opl\ for the header files an8@ystem\Opx\ for the OPXs themselves. The OPX header
files are stored in the ROM, but may be created in RAM by using the ‘Create standard files’ option in the ‘Tools’
menu in the Program editor.

With these OPXs, the OPL programmer is sometimes given direct access to objects via pointers (for efficiency).
Otherwise sprites, for example, could not be set up using an array of IDs. These objects can be explicitly deleted
to free memory or else they will be deleted when the program exits.

USING OPXS)
4

OPL

DATE OPX
To use this OPX, you must included the header file Date.oxh, which contains the following declaration:

DECLARE OPX DATE,KUidOpxDate&,KOpxDateVersion%
DTNewDateTime&:(year& month&,day&,hour&, minute&,second&,micro&) : 1
DTDeleteDateTime:(id&) : 2
DTYear&:(id&) : 3
DTMonth&:(id&) : 4
DTDay&:(id&) : 5
DTHour&:(id&) : 6
DTMinute&:(id&) : 7
DTSecond&:(id&) : 8
DTMicro&:(id&) : 9
DTSetYear:(id&,year&) : 10
DTSetMonth:(id&,month&) : 11
DTSetDay:(id&,day&) : 12
DTSetHour:(id&,hour&) : 13
DTSetMinute:(id& minute&) : 14
DTSetSecond:(id&,second&) : 15
DTSetMicro:(id&,micro&) : 16
DTNow&: : 17
DTDateTimeDiff:(start&,end&,BYREF year&,BYREF month&,BYREF day&,

BYREF hour&, BYREF minute&, BYREF second&,BYREF micro&) : 18
DTYearsDiff&:(st art&,end&) : 19
DTMonthsDiff&:(start&,end&) : 20
DTDaysDiff&:(start&,end&) : 21
DTHoursDiff&:(start&,end&) : 22
DTMinutesDiff&:(start&,end&) : 23
DTSecsDiff&:(start&,end&) : 24
DTMicrosDiff&:(start&,end&) : 25
DTWeekNolnYear&:(id&,yearstart&,rule&) : 26
DTDayNolnYear&:(id&, yearstart&) : 27
DTDayNolnWeek&:(id&) : 28
DTDaysInMonth&:(id&) : 29
DTSetHomeTime:(id&) : 30
LCCountryCode&: : 31
LCDecimalSeparator$: : 32
LCSetClockFormat:(format&) : 33
LCClockFormat&: : 34
LCStartOfWeek&: : 35
LCThousandsSeparator$: : 36

END DECLARE

DTNEWDATETIME&:
Usageid&=DTNEWDATETIME&:(year& month&,day&,hour&,minute&,second&,micro&)

Creates a new date/time object which contains all the supplied date/time components and return&l& handle
for it.

The year is stored as the usual four figure year, e.g. 1997.

The month is stored as 1 for January, 2 for February, etc.

USING OPXS)
4

OPL

The day is stored as the day number in the month.
The hour is the hour of the day in 12 or 24 hour clock according to the system setting.

The minutes, seconds and microseconds are stored as the usual values 0 to 59 for minutes and seconds and O to
999 for microseconds.

See DTDELETEDATETIME..

DTDELETEDATETIME:
Usage DELETEDATETIME:(id&)

Deletes the date/time object with hanil& . This should be called when a date/time object is no longer needed.
Date/time objects will be deleted automatically on unloading the Date OPX or the module which uses it.

See DTNEWDATETIME&:, DTNOW&.:.

DTYEAR&:

Usagey&=DTYEAR&:(id&)

Returns the year componer& which is stored in the date/time object with harnd& .
See DTNEWDATETIME&..

DTMONTH&:
Usagem&=DTMONTH&:(id&)

Returns the month componen&which is stored in the date/time object with haridk .
See DTNEWDATETIME&:.

DTDAY &:

Usageday&=DTDAY&:(id&)

Returns the day componetdy& which is stored in the date/time object with harid& .
See DTNEWDATETIME&..

DTHOUR:

Usage h&=DTHOUR&:(id&)

Returns the hour componem& which is stored in the date/time object with harid& .
See DTNEWDATETIME&:

DTMINUTE&:
Usagem&=DTMINUTE&:(id&)

Returns the minutes componen&which is stored in the date/time object with harid& .
See DTNEWDATETIME&..

USING OPXS)
4

OPL

DTSECOND &:
Usages&=DTSECOND&:(id&)

Returns the seconds compons&twhich is stored in the date/time object with harid& .
See DTNEWDATETIME&..

DTMICRO&:

Usagem&=DTMICRO&:(id&)

Returns the microseconds compon@aétwhich is stored in the date/time object with harid& .
See DTNEWDATETIME&:.

DTSETYEAR:
Usage DTSETYEAR:(y&,id&)

Sets the year component which is stored in the date/time object with dfdte y&.
See DTNEWDATETIME&:..

DTSETMONTH:
Usage DTSETMONTH:(m&,id&)

Sets the month component which is stored in the date/time object with dgdie m&
See DTNEWDATETIME&..

DTSETDAY:

Usage DTSETDAY:(day&,id&)

Sets the day component which is stored in the date/time object with idfadte day& .
See DTNEWDATETIME&..

DTSETHOUR:
Usage DTSETHOUR:(h&,id&)

Sets the hour component which is stored in the date/time object with dfadte h&.
See DTNEWDATETIME&.:.

DTSETMINUTE:
Usage DTSETMINUTE:(m&,id&)

Sets the minutes component which is stored in the date/time object with ftadie m&
See DTNEWDATETIME&..

DTSETSECOND:

Usage DTSETSECOND:(s&,id&)

Sets the seconds component which is stored in the date/time object withid&ndesé&.
See DTNEWDATETIME&:..

USING OPXS)
4

OPL

DTSETMICRO:
Usage DTSETMICRO:(m&,id&)

Sets the microseconds component which is stored in the date/time object withith&ntben&
See DTNEWDATETIME&..

DTNOW &:
Usageid&=DTNOW&:

Creates a new date/time object which contains all the date/time components of the current time and returns a
handleid& for it.

Example: Timing a loop

start&=DTNowé&:
WHILE condition

ENDWH
end&=DTNow&:
PRINT “Time to do loop was”,DTMicrosDiff&:(start&,end&)

See DTNEWDATETIME&.:.

DTDATETIMEDIFF:

Usage DTDATETIMEDIFF:(start&,end&,BYREF year&,BYREF month&,BYREF day&,BYREF
hour&,BYREF minute&,BYREF second&,BYREF micro&)

Calculates the exact difference between two date/time objects with hatailt€s andend& in the form of a
date/time object. The difference is returned in the variai@as& , month& etc.

DTYEARSDIFF&:
Usagediff&=DTYEARSDIFF&:(start&,end&)

Returns the differenadiff& in whole years between the two date/time objects with hastie® and
end&.

See DTNEWDATETIME&:.

DTMONTHSDIFF&:
Usagediff&=DTMONTHSDIFF&:(start&,end&)

Returns the differenceiff& in whole months between the two date/time objects with hasties® and
end&.

See DTNEWDATETIME&:.

DTDAYSDIFF&:
Usagediff&=DTDAYSDIFF&:(start&,end&)

Returns the differencdiff& in whole days between the two date/time objects with hastie®. and
endé&.

See DTNEWDATETIME&:.

USING OPXS)
4

OPL

DTHOURSDIFF&:
Usagediff&=DTHOURSDIFF&:(start&,end&)

Returns the differencdiff& in whole hours between the two date/time objects with hastie® and
end&.

See DTNEWDATETIME&.:.

DTMINUTESDIFF&:
Usagediff&=DTMINUTESDIFF&:(start&,end&)

Returns the differencdiff& in whole minutes between the two date/time objects with hastie®. and
end&.

See DTNEWDATETIME&.:.

DTSECONDSDIFF&:
Usagediff&=DTSECONDSDIFF&:(start&,end&)

Returns the differencdiff& in whole seconds between the two date/time objects with hastdlé& and
end&.

See DTNEWDATETIME&:.

DTMICROSDIFF&:
Usagediff&=DTMICROSDIFF&:(start&,end&)

Returns the differencdiff& in whole microseconds between the two date/time objects with hestdie®
andend&.

See DTNEWDATETIME&:, DTNOW&.:.

DTWEEKNOINYEAR&:

Usagew&=DTWEEKNOINYEAR&:(id&,yearstart&,rule&)
Returns the week number in the year of the date/time object with hd&dl& he first day of the year is
specified by the date/time object with hangarstart& . This would usually be set to 1 January in the

appropriate year, but also allows you to set the start of the year to the beginning of the financial year or the
academic year, for example.

rule& can take three values (0,1,2), allowing the week number to be calculated by one of three different rules:

value meaning

0 the first day of the year is always in week one,

1 requires the first week of the year to have at least four days in it,
2 requires the first week of the year to have the full seven days.

The Agenda application and other Series 5 applications use the rule with value 1 by default.

USING OPXS)
4

OPL

DTDAYNOINYEAR&:
Usage DTDAYNOINYEAR&:(id&,yearstart&)

Returns the day number in the year of the date/time object with Hd&dleThe first day of the year is specified
by the date/time object with handfearstart&

DTDAYNOINWEEK&:
Usage:n&=DTDAYNOINWEEK&:(id&)
Returns the day number in the week (1-7) of the date/time object with hd&dle

DTDAYSINMONTH&:
Usagen&=DTDAYSINMONTH&:(id&)

Returns the number of days in the month of the month specified by the month component of the date/time object
with handleid& .

DTSETHOMETIME:
Usage DTSETHOMETIME:(id&)

Sets the system time to the time specified in the date/time object with ld&dle

LCCOUNTRYCODE:
Usagercc&=LCCOUNTRYCODE&:

Returns the country code for the current system home country (LC stands for ‘Locale’), which may be used to
select country-specific data. The country code for any given country is the international dialling prefix for that
country

LCDECIMALSEPARATORS:
UsagedecSep$=LCDECIMALSEPARATORS:

Returns the decimal separator (the character used in decimal numbers to separate whole part from fractional
part) according to the local system setting.

LCSETCLOCKFORMAT:
Usage L CSETCLOCKFORMAT:(format&)

Sets the system clock format to either digital or analofprifiat&=0 then the clock is set to analog or if it is
1 then the clock is set to digital.

LCCLOCKFORMAT &:

Usageformat&=LCCLOCKFORMAT&:

Returns the current system clock format The procedure returns 0 if the system clock is analog and 1 if it is
digital.

LCSTARTOFWEEK&:

Usagestart&=LCSTARTOFWEEK&:

Returns the day of the week which set as the first day of the week in the system setting. A return value of 1
indicates Monday, 2 Tuesday, and so on.

USING OPXS)
4

OPL

UsagethouSep$=LCTHOUSANDSSEPARATORS:

Returns the thousands separator (the character used to separate every three digits of a large number) according to
the local system setting.

To use this OPX, you must included the header file System.oxh, which contains the following declaration:

DECLARE OPX SYSTEM,KUidOpxSystemé&,KOpxSystemVersion%
BackLightOn&: : 1
SetBackLightOn:(state&) : 2
SetBackLightOnTime:(seconds&) : 3
SetBacklightBehavior:(behaviour&) : 4
IsBacklightPresent&: : 5
SetAutoSwitchOffBehavior:(behaviour&) : 6
SetAutoSwitchOffTime:(seconds&) : 7
SetActive:(state&) : 8
ResetAutoSwitchOffTimer: : 9
SwitchOff: : 10
SetSoundEnabled:(state&) : 11
SetSoundDriverEnabled:(state&) : 12
SetKeyClickEnabled:(state&) : 13
SetPointerClickEnabled:(state&) : 14
SetDisplayContrast:(value&) : 15
MaxDisplayContrast&: : 16
IsReadOnly&:(file$) : 17
IsHidden&:(file$) : 18
IsSystemé&:(file$) : 19
SetReadOnly:(file$,state&) : 20
SetHiddenFile:(file$,state&) : 21
SetSystemFile:(file$,state&) : 22
VolumeSize&:(drive&) : 23
VolumeSpaceFree&:(drive&) : 24
VolumeUniquelD&:(drive&) : 25
MediaType&:(drive&) : 26
GetFileTime:(file$,DateTimeld&) : 27
SetFileTime:(file$,DateTimeld&) : 28
DisplayTaskList: : 29
SetComputeMode:(State&) : 30
RunApp&:(lib$,doc$,tail$,cmd&) : 31
RunExe&:(name$) : 32
LogonToThread:(threadld&,BYREF statusWord&) : 33
TerminateCurrentProcess:(reason&) : 34
TerminateProcess:(proc$,reason&) : 35
KillCurrentProcess:(reason&) : 36
KillProcess:(proc$,reason&) : 37
PlaySound:(file$,volume&) : 38
PlaySoundA:(file$,volume&,BYREF statusWord&) : 39
StopSoundé&: : 40
Mod&:(left&,right&) : 41

(usinG opxs |[9)

OPL

XOR&:(left&,right&) : 42

LoadRsc&:(file$) : 43

UnLoadRsc:(id&) : 44

ReadRsc$:(id&) : 45

ReadRscLong&:(id&) : 46

CheckUid$:(Uid1&,Uid2&,Uid38&) : 47

SetPointerGrabOn:(Winld&,state&) : 48

MachineName$: : 49

MachineUniqueld:(BYREF high&,BYREF low&) : 50

EndTask&:(threadld&,previous&) : 51

KillTask&:(threadld&,previous&) : 52

GetThreadldFromOpenDoc&:(doc$,BYREF previous&) : 53

GetThreadldFromAppUid&:(uid&,BYREF previous&) : 54

SetForeground: : 55

SetBackground: : 56

SetForegroundByThreadé&:(threadld&,previous&) : 57

SetBackgroundByThread&:(threadld&,previous&) : 58

GetNextWindowGroupName$:(threadld&,BYREF previous&) : 59

GetNextWindowld&:(threadld&,previous&) : 60

SendKeyEventToApp&:(threadld&,previous&,code&,scanCode&,

modifiers&,repeats&) : 61

IrDAConnectToSend&:(protocol$,port&) : 62

IrDAConnectToReceive:(protocol$,port&,BYREF statusW&) : 63

[rDAWrite:(chunk$,BYREF statusW&) : 64

IrDARead$: : 65

IrDAReadA:(stringAddr&,BYREF statusW&): 66

IrDAWaitForDisconnect: : 67

IrDADisconnect: : 68

MainBatteryStatus&: :69

BackupBatteryStatus&: :70

CaptureKey&:(keyCode&,mask&,modifier&) :71

CancelCaptureKey:(handle&) : 72

SetPointerCapture:(winld&,flags&) :73

ClaimPointerGrab:(winld&,state&) :74

OpenFileDialog$:(seedFile$,uid1&,uid2&,uid3&) : 75

CreateFileDialog$:(seedPath$) : 76

SaveAsFileDialog$:(seedPath$,BYREF useNewFile%) : 77
END DECLARE

UsagebackLight&=BACKLIGHTON&:

Returns -1 if the backlight is switched on or O if it is switched off.

Usage SETBACKLIGHTON:(state&)
Switches the backlight on state&=1 or off if state&=0

(usinG opxs [10)

OPL

SETBACKLIGHTONTIME:
Usage SETBACKLIGHTONTIME:(seconds&)

Sets the time in secondseconds&) that the backlight should remain on after it has been switched on.

SETBACKLIGHTBEHAVIOR:

Usage SETBACKLIGHTBEHAVIOR:(behavior&)

Sets the backlight’s turning off behaviour.

behavior&=0 sets the turning off of the backlight to be on a timer,

behavior&=1 sets the backlight not to be on a timer.

ISBACKLIGHTPRESENT&:
Usageret&=ISBACKLIGHTPRESENT&:

Returns -1 if there is a backlight present and O if there is not.

SETAUTOSWITCHOFFBEHAVIOR:
Usage SETAUTOSWITCHOFFBEHAVIOR:(behavior&)

Sets the machine’s auto switch off behaviour.

behavior&=0 disables the machine’s auto switch off mechanism.
behavior&=1 sets the machine auto switch off to occur only when its batteries are low.
behavior&=2 sets the machines auto switch off to occur always.

SETAUTOSWITCHOFFTIME:
Usage SETAUTOSWITCHOFFTIME:(seconds&)

Sets the time in secondseconds&) for which the machine may remain switched on when it is not being used.

SETACTIVE:
Usage SETACTIVE:(state&)

Sets the current process activetdte&=1 or not active ifstate&=0 . This will determine whether or not the
machine can automatically turn off when the user is not using the machine: if the process is active then the
machine will not automatically turn off.

RESETAUTOSWITCHOFFTIMER:
Usage RESETAUTOSWITCHOFFTIMER:(seconds&)

‘Tickles’ the machine’s auto switch off timer, restarting its count down to switching off.

SWITCHOFF:
Usage:SWITCHOFF:

Switches off the machine.

A As with the keyword OFF, you should be careful not to use SWITCHOFF: in a loop. If you do, it may be
impossible to switch the Series 5 back on, and you may then have to reset it.

USING OPXS)
4

OPL

SETSOUNDENABLED:
Usage SETSOUNDENABLED:(state&)

Enables the machine’s soundsthte&=1 or disables it iftate&=0

SETSOUNDDRIVERENABLED:
Usage'SETSOUNDDRIVERENABLED:(state&)

Switches the machines sound driver ostifte&=1 or off if state&=0

SETKEYCLICKENABLED:
Usage SETKEYCLICKENABLED:(state&)

Determines whether or not a keypress makes a cliale&=1 enables the click arstate&=0 disables it.

SETPOINTERCLICKENABLED:
Usage SETPOINTERCLICKENABLED:(state&)

Determines whether or not a pointer event makes a click. (A pointer event occurs whenever the machine’s
screen is pressedsjate&=1 enables the click arstate&=0 disables it.

SETDISPLAYCONTRAST:
Usage SETDISPLAYCONTRAST:(value&)

Sets the contrast on the machine’s screalue& specifies the contrast value, which can be between zero and
the maximum display contrast.

See MAXDISPLAYCONTRAST&:.

MAXDISPLAYCONTRAST&:
UsagemaxContrast&=MAXDISPLAYCONTRAST&:

Returns the maximum value to which the machines display contrast can be set.
See SETDISPLAYCONTRAST..

ISREADONLY &:
UsagereadOnly&=ISREADONLY&:(file$)

Returns -1 if the filefile$ | is a read-only file and 0 if it is not.

ISHIDDEN &:
Usagehidden&=ISHIDDEN&:(file$)

Returns -1 if the filefile$, is hidden by the system and O if it is not.

ISSYTEM&:
Usagesystem&=ISSYTEM&:(file$)

Returns -1 if the filefile$, is a system file and O if it is not.

USING OPXS)
4

OPL

SETREADONILY:
Usage SETREADONLY:(file$,state&)

Sets the filefile$, to be read only iftate&=1 or not read-only istate&=0

SETHIDDENFILE:
Usage SETHIDDENFILE:(file$,state&)
Sets the filefile$ |, to be hidden by the systensitate&=1 or not to be hidden dtate&=0

SETSYSTEMFILE:
Usage SETSYSTEMFILE:(file$,state&)

Sets the filefile$ |, to be a system file State&=1 or not to be a system file state&=0

VOLUMESIZE&:
UsageVOLUMESIZE&:(drive&)

Returns the size in bytes of the storage space on the drive specifiedd®y . drive& can take values O to
25. 0 specifies thA:, 1 specifiedB: , 2 specifie€C: and so on.

VOLUMESPACEFREE&:
Usagefree&=VOLUMESPACEFREE&:(drive&)

Returns the size in bytes of the storage space that is available for use on the drive spetified by
drive& can take values 0 to 25. 0 specifiesAhe 1 specifiedB: , 2 specifieC: and so on.

VOLUMEUNIQUEID &:
UsagevolUid&=VOLUMEUNIQUEID&:(drive&)

Returns the unique identification number of the media on the drive specifaivb§ . drive& can take
values 0 to 25. 0 specifies tAe, 1 specifieB: , 2 specifie: and so on.

See MEDIATYPE&:.

USING OPXS)
4

OPL

MEDIATYPE&:
Usagemedia&=MEDIATYPE&:(drive&)

Returns the media type present on the drive specifiattibg& . drive& can take values 0 to 25. 0 specifies
theA: , 1 specifieB: , 2 specifiesC: and so on. The value returned may be any of the following,

value meaning constant declaration in System.oxh
0 no media present CONST KMediaNotPresent&=0

1 media unknown CONST KMediaUnknown&=1

2 floppy disk CONST KMediaFloppy&=2

3 hard disk CONST KMediaHardDisk&=3

4 CD-ROM CONST KMediaCdRom&=4

5 RAM CONST KMediaRam&=5

6 flash CONST KMediaFlash&=6

7 ROM CONST KMediaRom&=7

8 remote CONST KMediaRemote&=8

GETFILETIME:
Usage GETFILETIME:(file$,dateTimeld&)

Returns the time that the filele$, was last modified intdateTimeld& . Itis necessary to pass this
procedure the ID of a date/time object which the procedure will then set to the required time. To obtain and
read a date/time object, see the ‘Date OPX’ section.

SETFILETIME:
Usage SETFILETIME:(file$,dateTimeld&)

Sets the time that the filéle$, was last modified tdateTimeld& . Itis necessary to pass this procedure
the ID of a date/time object which the procedure will use to set the time. To get a date/time object, which
provides microsecond accuracy, see the ‘Date OPX’ section.

DISPLAYTASKLIST:
Usage DISPLAYTASKLIST:

Displays the system-wide task list. The user may then close a file, go to another task or close the dialog.

SETCOMPUTEMODE:
Usage'SETCOMPUTEMODE:(state&)
Changes the priority control for the current program.

The following values are available fetate& :

value meaning constant declaration in System.oxh
0 compute mode disabled CONST KComputeModeDisabled&=0
1 compute mode on CONST KComputeModeOn&=1

2 compute mode off CONST KComputeModeOff&=2

USING OPXS)
4

OPL

This puts the current process into compute metd&=KComputeModeOn&) or takes it out of compute
mode gtate&=KComputeModeOff&). In compute mode, a process runs at the lower background priority
even when it is the foreground process. Disabling compute mode control
(state&=KComputeModeDisabled&) prevents the window server from changing the program’s priority
when it moves between background and foreground.

OPL runs in compute mode by default to support simple OPOs which cannot always be assumed to be well-
behaved programs.

This default behaviour is necessary because OPL programs would not otherwise give any background programs
a chance to run, simply by running in a tight loop. If your program doesn’t run in a tight loop, i.e. if it calls
GETEVENT32, GET, etc. regularly, you can & €TCOMPUTEMODE:(KComputeModeOff&)

é Note that TBarlnit: in Toolbar.opo sets compute mode off, since any program that has a toolbar shouldn’t
be running in a tight loop at any time. (See the ‘Friendlier Interaction’ section of the ‘GUI.pdf’ document
for more details.)

Usagethread&=RUNAPP&:(lib$,doc$,tail$,cmd&)

Runs an application and returns a thread ID for the application. The thread ID can be used to logon to the
application, to find out when and why it finished. This ID can also be used to locate the window group, end the
task etc.

lib$ is the C++ application name.
doc$ is the document name, if any, to pass to the application.
tail$ s the tail end, needed only by certain applications such as OPL.

cmdé&can take values:

value meaning

0 open

1 create

2 run

3 background

The values 0, 1 and 2 are the same a€kD$(3) (see the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’
document). The value 3 will run the application in the background.

For example, to run an OPL program:
k&=RUNAPP&:(“OPL",*","RZ:\System\OpI\Toolbar.opo”,2)

Note thatail$ contains a leading: this is required by OPL.

To open the Data help file:
k&=RUNAPP&:(“Data”,“Z:\System\Data\Help”,"",0)

See also the ‘OPL Applications’ section in the ‘Advanced.pdf document.
See LOGONTOTHREAD..

(usinG opxs [15)

OPL

RUNEXE&:
UsageRUNEXE&:(file$)

Runs an executable EXE fifée$ and returns its thread ID. The thread ID can then be used to logon to the
thread and find out when and why it finished.

See LOGONTOTHREAD..

LOGONTOTHREAD:
UsagelL OGONTOTHREAD:(threadld&,statusWord&)

Logs on to the thread with Itreadld& and sets the status wasthtusWord& when the thread has
completed. As for othe