/* * wiringPi: * Arduino compatable (ish) Wiring library for the Raspberry Pi * Copyright (c) 2012 Gordon Henderson * Additional code for pwmSetClock by Chris Hall * * Thanks to code samples from Gert Jan van Loo and the * BCM2835 ARM Peripherals manual, however it's missing * the clock section /grr/mutter/ *********************************************************************** * This file is part of wiringPi: * https://projects.drogon.net/raspberry-pi/wiringpi/ * * wiringPi is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * wiringPi is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with wiringPi. * If not, see . *********************************************************************** */ // Revisions: // 19 Jul 2012: // Moved to the LGPL // Added an abstraction layer to the main routines to save a tiny // bit of run-time and make the clode a little cleaner (if a little // larger) // Added waitForInterrupt code // Added piHiPri code // // 9 Jul 2012: // Added in support to use the /sys/class/gpio interface. // 2 Jul 2012: // Fixed a few more bugs to do with range-checking when in GPIO mode. // 11 Jun 2012: // Fixed some typos. // Added c++ support for the .h file // Added a new function to allow for using my "pin" numbers, or native // GPIO pin numbers. // Removed my busy-loop delay and replaced it with a call to delayMicroseconds // // 02 May 2012: // Added in the 2 UART pins // Change maxPins to numPins to more accurately reflect purpose #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "softPwm.h" #include "softTone.h" #include "wiringPi.h" #ifndef TRUE #define TRUE (1==1) #define FALSE (1==2) #endif // Environment Variables #define ENV_DEBUG "WIRINGPI_DEBUG" #define ENV_CODES "WIRINGPI_CODES" // Mask for the bottom 64 pins which belong to the Banana Pro // The others are available for the other devices #define PI_GPIO_MASK (0xFFFFFFC0) struct wiringPiNodeStruct *wiringPiNodes = NULL; // BCM Magic #define BCM_PASSWORD 0x5A000000 // The BCM2835 has 54 GPIO pins. // BCM2835 data sheet, Page 90 onwards. // There are 6 control registers, each control the functions of a block // of 10 pins. // Each control register has 10 sets of 3 bits per GPIO pin - the ALT values // // 000 = GPIO Pin X is an input // 001 = GPIO Pin X is an output // 100 = GPIO Pin X takes alternate function 0 // 101 = GPIO Pin X takes alternate function 1 // 110 = GPIO Pin X takes alternate function 2 // 111 = GPIO Pin X takes alternate function 3 // 011 = GPIO Pin X takes alternate function 4 // 010 = GPIO Pin X takes alternate function 5 // // So the 3 bits for port X are: // X / 10 + ((X % 10) * 3) // Port function select bits #define FSEL_INPT 0b000 #define FSEL_OUTP 0b001 #define FSEL_ALT0 0b100 #define FSEL_ALT1 0b101 #define FSEL_ALT2 0b110 #define FSEL_ALT3 0b111 #define FSEL_ALT4 0b011 #define FSEL_ALT5 0b010 // Access from ARM Running Linux // Taken from Gert/Doms code. Some of this is not in the manual // that I can find )-: #define BCM2708_PERI_BASE 0x20000000 #define GPIO_PADS (BCM2708_PERI_BASE + 0x00100000) #define CLOCK_BASE (BCM2708_PERI_BASE + 0x00101000) #define GPIO_BASE (BCM2708_PERI_BASE + 0x00200000) #define GPIO_TIMER (BCM2708_PERI_BASE + 0x0000B000) #define GPIO_PWM (BCM2708_PERI_BASE + 0x0020C000) #define PAGE_SIZE (4*1024) #define BLOCK_SIZE (4*1024) // PWM // Word offsets into the PWM control region #define PWM_CONTROL 0 #define PWM_STATUS 1 #define PWM0_RANGE 4 #define PWM0_DATA 5 #define PWM1_RANGE 8 #define PWM1_DATA 9 // Clock regsiter offsets #define PWMCLK_CNTL 40 #define PWMCLK_DIV 41 #define PWM0_MS_MODE 0x0080 // Run in MS mode #define PWM0_USEFIFO 0x0020 // Data from FIFO #define PWM0_REVPOLAR 0x0010 // Reverse polarity #define PWM0_OFFSTATE 0x0008 // Ouput Off state #define PWM0_REPEATFF 0x0004 // Repeat last value if FIFO empty #define PWM0_SERIAL 0x0002 // Run in serial mode #define PWM0_ENABLE 0x0001 // Channel Enable #define PWM1_MS_MODE 0x8000 // Run in MS mode #define PWM1_USEFIFO 0x2000 // Data from FIFO #define PWM1_REVPOLAR 0x1000 // Reverse polarity #define PWM1_OFFSTATE 0x0800 // Ouput Off state #define PWM1_REPEATFF 0x0400 // Repeat last value if FIFO empty #define PWM1_SERIAL 0x0200 // Run in serial mode #define PWM1_ENABLE 0x0100 // Channel Enable // Timer // Word offsets #define TIMER_LOAD (0x400 >> 2) #define TIMER_VALUE (0x404 >> 2) #define TIMER_CONTROL (0x408 >> 2) #define TIMER_IRQ_CLR (0x40C >> 2) #define TIMER_IRQ_RAW (0x410 >> 2) #define TIMER_IRQ_MASK (0x414 >> 2) #define TIMER_RELOAD (0x418 >> 2) #define TIMER_PRE_DIV (0x41C >> 2) #define TIMER_COUNTER (0x420 >> 2) // Locals to hold pointers to the hardware static volatile uint32_t *gpio; static volatile uint32_t *pwm; static volatile uint32_t *clk; static volatile uint32_t *pads; #ifdef USE_TIMER static volatile uint32_t *timer; static volatile uint32_t *timerIrqRaw; #endif /*add for BananaPro by LeMaker team*/ // for mmap BananaPro #define MAX_PIN_NUM (0x40) //64 #define SUNXI_GPIO_BASE (0x01C20800) #define MAP_SIZE (4096*2) #define MAP_MASK (MAP_SIZE - 1) //sunxi_pwm #define SUNXI_PWM_BASE (0x01c20e00) #define SUNXI_PWM_CTRL_REG (SUNXI_PWM_BASE) #define SUNXI_PWM_CH0_PERIOD (SUNXI_PWM_BASE + 0x4) #define SUNXI_PWM_CH1_PERIOD (SUNXI_PWM_BASE + 0x8) #define SUNXI_PWM_CH0_EN (1 << 4) #define SUNXI_PWM_CH0_ACT_STA (1 << 5) #define SUNXI_PWM_SCLK_CH0_GATING (1 << 6) #define SUNXI_PWM_CH0_MS_MODE (1 << 7) //pulse mode #define SUNXI_PWM_CH0_PUL_START (1 << 8) #define SUNXI_PWM_CH1_EN (1 << 19) #define SUNXI_PWM_CH1_ACT_STA (1 << 20) #define SUNXI_PWM_SCLK_CH1_GATING (1 << 21) #define SUNXI_PWM_CH1_MS_MODE (1 << 22) //pulse mode #define SUNXI_PWM_CH1_PUL_START (1 << 23) #define PWM_CLK_DIV_120 0 #define PWM_CLK_DIV_180 1 #define PWM_CLK_DIV_240 2 #define PWM_CLK_DIV_360 3 #define PWM_CLK_DIV_480 4 #define PWM_CLK_DIV_12K 8 #define PWM_CLK_DIV_24K 9 #define PWM_CLK_DIV_36K 10 #define PWM_CLK_DIV_48K 11 #define PWM_CLK_DIV_72K 12 #define GPIO_PADS_BP (0x00100000) #define CLOCK_BASE_BP (0x00101000) // addr should 4K*n // #define GPIO_BASE_BP (SUNXI_GPIO_BASE) #define GPIO_BASE_BP (0x01C20000) #define GPIO_TIMER_BP (0x0000B000) #define GPIO_PWM_BP (0x01c20000) //need 4k*n static int wiringPinMode = WPI_MODE_UNINITIALISED; int wiringPiCodes = FALSE; /*end 2014.09.18*/ // Data for use with the boardId functions. // The order of entries here to correspond with the PI_MODEL_X // and PI_VERSION_X defines in wiringPi.h // Only intended for the gpio command - use at your own risk! const char *piModelNames [6] ={ "Unknown", "Model A", "Model B", "Model B+", "Compute Module", "Banana Pro", //add for BananaPro by LeMaker team }; const char *piRevisionNames [5] ={ "Unknown", "1", "1.1", "1.2", "2", }; const char *piMakerNames [5] ={ "Unknown", "Egoman", "Sony", "Qusda", "LeMaker", //add for BananaPro by LeMaker team }; // Time for easy calculations static uint64_t epochMilli, epochMicro; // Misc static int wiringPiMode = WPI_MODE_UNINITIALISED; static volatile int pinPass = -1; static pthread_mutex_t pinMutex; // Debugging & Return codes int wiringPiDebug = FALSE; // guenter FALSE ; int wiringPiReturnCodes = FALSE; // sysFds: // Map a file descriptor from the /sys/class/gpio/gpioX/value static int sysFds [64] ={ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; // ISR Data static void (*isrFunctions [64])(void); // Doing it the Arduino way with lookup tables... // Yes, it's probably more innefficient than all the bit-twidling, but it // does tend to make it all a bit clearer. At least to me! // pinToGpio: // Take a Wiring pin (0 through X) and re-map it to the BCM_GPIO pin // Cope for 3 different board revisions here. static int *pinToGpio; // physToGpio: // Take a physical pin (1 through 26) and re-map it to the BCM_GPIO pin // Cope for 2 different board revisions here. // Also add in the P5 connector, so the P5 pins are 3,4,5,6, so 53,54,55,56 static int *physToGpio; // gpioToGPFSEL: // Map a BCM_GPIO pin to it's Function Selection // control port. (GPFSEL 0-5) // Groups of 10 - 3 bits per Function - 30 bits per port static uint8_t gpioToGPFSEL [] ={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, }; // gpioToShift // Define the shift up for the 3 bits per pin in each GPFSEL port static uint8_t gpioToShift [] ={ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, }; // gpioToGPSET: // (Word) offset to the GPIO Set registers for each GPIO pin static uint8_t gpioToGPSET [] ={ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; // gpioToGPCLR: // (Word) offset to the GPIO Clear registers for each GPIO pin static uint8_t gpioToGPCLR [] ={ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, }; // gpioToGPLEV: // (Word) offset to the GPIO Input level registers for each GPIO pin static uint8_t gpioToGPLEV [] ={ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, }; // GPPUD: // GPIO Pin pull up/down register #define GPPUD 37 // gpioToPUDCLK // (Word) offset to the Pull Up Down Clock regsiter static uint8_t gpioToPUDCLK [] ={ 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, }; // gpioToPwmPort // The port value to put a GPIO pin into PWM mode static uint8_t gpioToPwmPort [] ={ 0, 0, 0, 0, 0, 0, 0, 0, // 0 -> 7 0, 0, 0, 0, PWM0_DATA, PWM1_DATA, 0, 0, // 8 -> 15 0, 0, PWM0_DATA, PWM1_DATA, 0, 0, 0, 0, // 16 -> 23 0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31 0, 0, 0, 0, 0, 0, 0, 0, // 32 -> 39 PWM0_DATA, PWM1_DATA, 0, 0, 0, PWM1_DATA, 0, 0, // 40 -> 47 0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55 0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63 }; // gpioToGpClkALT: // ALT value to put a GPIO pin into GP Clock mode. // On the Pi we can really only use BCM_GPIO_4 and BCM_GPIO_21 // for clocks 0 and 1 respectively, however I'll include the full // list for completeness - maybe one day... #define GPIO_CLOCK_SOURCE 1 // gpioToGpClkALT0: // gpioToClk: // (word) Offsets to the clock Control and Divisor register static uint8_t gpioToClkCon [] ={ -1, -1, -1, -1, 28, 30, 32, -1, // 0 -> 7 -1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15 -1, -1, -1, -1, 28, 30, -1, -1, // 16 -> 23 -1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31 28, -1, 28, -1, -1, -1, -1, -1, // 32 -> 39 -1, -1, 28, 30, 28, -1, -1, -1, // 40 -> 47 -1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55 -1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63 }; static uint8_t gpioToClkDiv [] ={ -1, -1, -1, -1, 29, 31, 33, -1, // 0 -> 7 -1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15 -1, -1, -1, -1, 29, 31, -1, -1, // 16 -> 23 -1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31 29, -1, 29, -1, -1, -1, -1, -1, // 32 -> 39 -1, -1, 29, 31, 29, -1, -1, -1, // 40 -> 47 -1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55 -1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63 }; /*add for BananaPro by LeMaker team*/ //map tableb for BP static int *physToPin; static int upDnConvert[3] = {7, 7, 5}; /* guenter static int pinToGpio_BP [64] = { 275,259, 274,273, 244,245, 272,226, 53,52, 266,270, 268,269, 267,228, 229, -1, -1, -1, -1, 35, 277,45, 39, 37, 276,38, 44,40, 257,256, // ...31 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,// ... 63 } ; guenter ende */ // WiringPiNr. gegeben .. -> Array GPIOx orange pi guenter neu // A ab 0x00, B ab 0x20, C ab 0x40, D ab 0x50 ...... // 00 - 31 = PA00-PA31 // 32 - 63 = PB00-PB31 // 64 - 95 = PC00-PC31 // 96 - 127 = PD00-PD31 // 128 - 159 = PE00-PE31 // 160 - 191 = PF00-PF31 // 192 - 223 = PG00-PG31 // nanopi m1 done static int pinToGpio_BP [64] ={ 0, 6, // 0, 1 13, 200, // 2, 3 200, 201, // 4 5 1, 203, // 6, 7 12, 11, // 8, 9 67, 17, //10,11 64, 65, //12,13 66, 198, //14,15 199, -1, //16,17 -1, -1, //18,19 -1, 20, //20,21 21, 8, //22,23 13, 9, //24,25 7, 16, //26,27 15, 14, //28,29 19, 18, //30,31 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63 }; // guenter neu ende // nanopi m1 done static int pinTobcm_BP [64] ={ 19, 18, //map to BCM GPIO0,1 12, 11, //map to BCM GPIO2,3 203, 20, //map to BCM GPIO4,5 21, 17, //map to BCM GPIO6,7 67, 65, //map to BCM GPIO8,9 64, 66, //map to BCM GPIO10,11 7, 8, //map to BCM GPIO12,13 198, 199, //map to BCM GPIO14,15 16, 0, //map to BCM GPIO16,17 6, 13, //map to BCM GPIO18,19 15, 14, //map to BCM GPIO20,21 3, 200, //map to BCM GPIO22,23 201, 1, //map to BCM GPIO24,25 9, 13, //map to BCM GPIO26,27 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 29... 44 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, //45... 60 -1, -1, -1, -1 // ...63 }; // nanopi m1 done static int physToGpio_BP [64] ={ -1, // 0 -1, -1, // 1, 2 12, -1, // 3, 4 11, -1, // 5, 6 203, 198, // 7, 8 -1, 199, // 9, 10 0, 6, //11, 12 2, -1, //13, 14 3, 200, //15, 16 -1, 201, //17, 18 64, -1, //19, 20 65, 1, //21, 22 66, 67, //23, 24 -1, 17, //25, 26 19, 18, //27, 28 20, -1, //29, 30 21, 7, //31, 32 8, -1, //33, 34 16, 13, //35, 36 9, 15, //37, 38 -1, 14, //39, 40 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, //41-> 55 -1, -1, -1, -1, -1, -1, -1, -1 // 56-> 63 }; // static int syspin [64] ={ -1, -1, 2, 3, 4, 5, 6, 7, //GPIO0,1 used to I2C 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; static int edge [64] ={ -1, -1, -1, -1, 4, -1, -1, 7, //support the INT 8, 9, 10, 11, -1, -1, 14, 15, -1, 17, -1, -1, -1, -1, 22, 23, 24, 25, -1, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; static int pinToGpioR3 [64] ={ 17, 18, 27, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7 2, 3, // I2C - SDA0, SCL0 wpi 8 - 9 8, 7, // SPI - CE1, CE0 wpi 10 - 11 10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14 14, 15, // UART - Tx, Rx wpi 15 - 16 -1, -1, -1, -1, // Rev 2: New GPIOs 8 though 11 wpi 17 - 20 5, 6, 13, 19, 26, // B+ wpi 21, 22, 23, 24, 25 12, 16, 20, 21, // B+ wpi 26, 27, 28, 29 0, 1, // B+ wpi 30, 31 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63 }; static int physToGpioR3 [64] = //head num map to BCMpin { -1, // 0 -1, -1, // 1, 2 2, -1, 3, -1, 4, 14, -1, 15, 17, 18, 27, -1, 22, 23, -1, 24, 10, -1, 9, 25, 11, 8, -1, 7, // 25, 26 0, 1, //27, 28 5, -1, //29, 30 6, 12, //31, 32 13, -1, //33, 34 19, 16, //35, 36 26, 20, //37, 38 -1, 21, //39, 40 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 56 -1, -1, -1, -1, -1, -1, -1, // ... 63 }; static int physToPinR3 [64] = //return wiringPI pin { -1, // 0 -1, -1, // 1, 2 8, -1, //3, 4 9, -1, //5, 6 7, 15, //7, 8 -1, 16, //9,10 0, 1, //11,12 2, -1, //13,14 3, 4, //15,16 -1, 5, //17,18 12, -1, //19,20 13, 6, //21,22 14, 10, //23, 24 -1, 11, // 25, 26 30, 31, //27, 28 21, -1, //29, 30 22, 26, //31, 32 23, -1, //33, 34 24, 27, //35, 36 25, 28, //37, 38 -1, 29, //39, 40 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 56 -1, -1, -1, -1, -1, -1, -1, // ... 63 }; // pins available on pin out by banks static int BP_PIN_MASK[9][32] = //[BANK] [INDEX] { { 0, 1, 2, 3, -1, -1, 6, 7, 8, 9, -1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PA {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PB { 0, 1, 2, 3, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PC {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PD {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PE {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PF {-1, -1, -1, -1, -1, -1, 6, 7, 8, 9, -1, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PG {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PH {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,}, //PI }; static int version = 0; static int pwmmode = 0; /*end 20140918*/ /* * Functions ********************************************************************************* */ /*add for BananaPro by LeMaker team*/ uint32_t readl(uint32_t addr) { uint32_t val = 0; uint32_t mmap_base = (addr & ~MAP_MASK); uint32_t mmap_seek = ((addr - mmap_base) >> 2); val = *(gpio + mmap_seek); return val; } void writel(uint32_t val, uint32_t addr) { uint32_t mmap_base = (addr & ~MAP_MASK); uint32_t mmap_seek = ((addr - mmap_base) >> 2); *(gpio + mmap_seek) = val; } //pwm for BananaPro only for pwm1 void sunxi_pwm_set_enable(int en) { int val = 0; val = readl(SUNXI_PWM_CTRL_REG); if (en) { val |= (SUNXI_PWM_CH1_EN | SUNXI_PWM_SCLK_CH1_GATING); } else { val &= ~(SUNXI_PWM_CH1_EN | SUNXI_PWM_SCLK_CH1_GATING); } if (wiringPiDebug) printf(">>function%s,no:%d,enable? :0x%x\n", __func__, __LINE__, val); writel(val, SUNXI_PWM_CTRL_REG); delay(1); } void sunxi_pwm_set_mode(int mode) { int val = 0; val = readl(SUNXI_PWM_CTRL_REG); mode &= 1; //cover the mode to 0 or 1 if (mode) { //pulse mode val |= (SUNXI_PWM_CH1_MS_MODE | SUNXI_PWM_CH1_PUL_START); pwmmode = 1; } else { //cycle mode val &= ~(SUNXI_PWM_CH1_MS_MODE); pwmmode = 0; } val |= (SUNXI_PWM_CH1_ACT_STA); if (wiringPiDebug) printf(">>function%s,no:%d,mode? :0x%x\n", __func__, __LINE__, val); writel(val, SUNXI_PWM_CTRL_REG); delay(1); } void sunxi_pwm_set_clk(int clk) { int val = 0; // sunxi_pwm_set_enable(0); val = readl(SUNXI_PWM_CTRL_REG); //clear clk to 0 val &= 0xf801f0; val |= ((clk & 0xf) << 15); //todo check wether clk is invalid or not writel(val, SUNXI_PWM_CTRL_REG); sunxi_pwm_set_enable(1); if (wiringPiDebug) printf(">>function%s,no:%d,clk? :0x%x\n", __func__, __LINE__, val); delay(1); } /** * ch0 and ch1 set the same,16 bit period and 16 bit act */ uint32_t sunxi_pwm_get_period(void) { uint32_t period_cys = 0; period_cys = readl(SUNXI_PWM_CH1_PERIOD); //get ch1 period_cys period_cys &= 0xffff0000; //get period_cys period_cys = period_cys >> 16; if (wiringPiDebug) printf(">>func:%s,no:%d,period/range:%d", __func__, __LINE__, period_cys); delay(1); return period_cys; } uint32_t sunxi_pwm_get_act(void) { uint32_t period_act = 0; period_act = readl(SUNXI_PWM_CH1_PERIOD); //get ch1 period_cys period_act &= 0xffff; //get period_act if (wiringPiDebug) printf(">>func:%s,no:%d,period/range:%d", __func__, __LINE__, period_act); delay(1); return period_act; } void sunxi_pwm_set_period(int period_cys) { uint32_t val = 0; //all clear to 0 if (wiringPiDebug) printf(">>func:%s no:%d\n", __func__, __LINE__); period_cys &= 0xffff; //set max period to 2^16 period_cys = period_cys << 16; val = readl(SUNXI_PWM_CH1_PERIOD); val &= 0x0000ffff; period_cys |= val; writel(period_cys, SUNXI_PWM_CH1_PERIOD); delay(1); } void sunxi_pwm_set_act(int act_cys) { uint32_t per0 = 0; //keep period the same, clear act_cys to 0 first if (wiringPiDebug) printf(">>func:%s no:%d\n", __func__, __LINE__); per0 = readl(SUNXI_PWM_CH1_PERIOD); per0 &= 0xffff0000; act_cys &= 0xffff; act_cys |= per0; writel(act_cys, SUNXI_PWM_CH1_PERIOD); delay(1); } int sunxi_get_gpio_mode(int pin) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); int offset = ((index - ((index >> 3) << 3)) << 2); uint32_t reval = 0; uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + ((index >> 3) << 2); if (wiringPiDebug) printf("func:%s pin:%d, bank:%d index:%d phyaddr:0x%x\n", __func__, pin, bank, index, phyaddr); if (BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); if (wiringPiDebug) printf("read reg val: 0x%x offset:%d return: %d\n", regval, offset, reval); // reval=regval &(reval+(7 << offset)); reval = (regval >> offset)&7; if (wiringPiDebug) printf("read reg val: 0x%x offset:%d return: %d\n", regval, offset, reval); return reval; } else { printf("line:%dpin number error\n", __LINE__); return reval; } } void sunxi_set_gpio_mode(int pin, int mode) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); int offset = ((index - ((index >> 3) << 3)) << 2); uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + ((index >> 3) << 2); if (wiringPiDebug) printf("func:%s pin:%d, MODE:%d bank:%d index:%d phyaddr:0x%x\n", __func__, pin, mode, bank, index, phyaddr); if (BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); if (wiringPiDebug) printf("read reg val: 0x%x offset:%d\n", regval, offset); if (INPUT == mode) { regval &= ~(7 << offset); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("Input mode set over reg val: 0x%x\n", regval); } else if (OUTPUT == mode) { regval &= ~(7 << offset); regval |= (1 << offset); if (wiringPiDebug) printf("Out mode ready set val: 0x%x\n", regval); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("Out mode set over reg val: 0x%x\n", regval); } else if (PWM_OUTPUT == mode) { // set pin PWMx to pwm mode regval &= ~(7 << offset); regval |= (0x2 << offset); if (wiringPiDebug) printf(">>>>>line:%d PWM mode ready to set val: 0x%x\n", __LINE__, regval); writel(regval, phyaddr); delayMicroseconds(200); regval = readl(phyaddr); if (wiringPiDebug) printf("<<<<> 5; int index = pin - (bank << 5); uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + 0x10; // +0x10 -> data reg if (wiringPiDebug) printf("func:%s pin:%d, value:%d bank:%d index:%d phyaddr:0x%x\n", __func__, pin, value, bank, index, phyaddr); if (BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); if (wiringPiDebug) printf("befor write reg val: 0x%x,index:%d\n", regval, index); if (0 == value) { regval &= ~(1 << index); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("LOW val set over reg val: 0x%x\n", regval); } else { regval |= (1 << index); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("HIGH val set over reg val: 0x%x\n", regval); } } else { printf("pin number error\n"); } return; } int sunxi_digitalRead(int pin) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + 0x10; // +0x10 -> data reg if (wiringPiDebug) printf("func:%s pin:%d,bank:%d index:%d phyaddr:0x%x\n", __func__, pin, bank, index, phyaddr); if (BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); regval = regval >> index; regval &= 1; if (wiringPiDebug) printf("***** read reg val: 0x%x,bank:%d,index:%d,line:%d\n", regval, bank, index, __LINE__); return regval; } else { printf("pin number error\n"); return regval; } } void sunxi_pullUpDnControl(int pin, int pud) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); int sub = index >> 4; int sub_index = index - 16 * sub; uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + 0x1c + sub * 4; // +0x10 -> pullUpDn reg if (wiringPiDebug) printf("func:%s pin:%d,bank:%d index:%d sub:%d phyaddr:0x%x\n", __func__, pin, bank, index, sub, phyaddr); if (BP_PIN_MASK[bank][index] != -1) { //PI13~PI21 need check again regval = readl(phyaddr); if (wiringPiDebug) printf("pullUpDn reg:0x%x, pud:0x%x sub_index:%d\n", regval, pud, sub_index); regval &= ~(3 << (sub_index << 1)); regval |= (pud << (sub_index << 1)); if (wiringPiDebug) printf("pullUpDn val ready to set:0x%x\n", regval); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("pullUpDn reg after set:0x%x addr:0x%x\n", regval, phyaddr); } else { printf("pin number error\n"); } delay(1); return; } /*end 2014.09.18*/ /* * wiringPiFailure: * Fail. Or not. ********************************************************************************* */ int wiringPiFailure(int fatal, const char *message, ...) { va_list argp; char buffer [1024]; if (!fatal && wiringPiReturnCodes) return -1; va_start(argp, message); vsnprintf(buffer, 1023, message, argp); va_end(argp); fprintf(stderr, "%s", buffer); exit(EXIT_FAILURE); return 0; } /* * piBoardRev: * Return a number representing the hardware revision of the board. * * Revision 1 really means the early Model B's. * Revision 2 is everything else - it covers the B, B+ and CM. * * Seems there are some boards with 0000 in them (mistake in manufacture) * So the distinction between boards that I can see is: * 0000 - Error * 0001 - Not used * 0002 - Model B, Rev 1, 256MB, Egoman * 0003 - Model B, Rev 1.1, 256MB, Egoman, Fuses/D14 removed. * 0004 - Model B, Rev 2, 256MB, Sony * 0005 - Model B, Rev 2, 256MB, Qisda * 0006 - Model B, Rev 2, 256MB, Egoman * 0007 - Model A, Rev 2, 256MB, Egoman * 0008 - Model A, Rev 2, 256MB, Sony * 0009 - Model A, Rev 2, 256MB, Qisda * 000d - Model B, Rev 2, 512MB, Egoman * 000e - Model B, Rev 2, 512MB, Sony * 000f - Model B, Rev 2, 512MB, Qisda * 0010 - Model B+, Rev 1.2, 512MB, Sony * 0011 - Pi CM, Rev 1.2, 512MB, Sony * * A small thorn is the olde style overvolting - that will add in * 1000000 * * The Pi compute module has an revision of 0011 - since we only check the * last digit, then it's 1, therefore it'll default to not 2 or 3 for a * Rev 1, so will appear as a Rev 2. This is fine for the most part, but * we'll properly detect the Compute Module later and adjust accordingly. * ********************************************************************************* */ static void piBoardRevOops(const char *why) { fprintf(stderr, "piBoardRev: Unable to determine board revision from /proc/cpuinfo\n"); fprintf(stderr, " -> %s\n", why); fprintf(stderr, " -> You may want to check:\n"); fprintf(stderr, " -> http://www.lemaker.org/\n"); /*modify for BananaPro by LeMmaker team*/ exit(EXIT_FAILURE); } /*add for BananaPro by LeMaker team*/ int isA20(void) { FILE *cpuFd; char line [120]; char *d; if ((cpuFd = fopen("/proc/cpuinfo", "r")) == NULL) piBoardRevOops("Unable to open /proc/cpuinfo"); while (fgets(line, 120, cpuFd) != NULL) { if (strncmp(line, "Hardware", 8) == 0) break; } fclose(cpuFd); if (strncmp(line, "Hardware", 8) != 0) piBoardRevOops("No \"Hardware\" line"); for (d = &line [strlen(line) - 1]; (*d == '\n') || (*d == '\r'); --d) *d = 0; if (wiringPiDebug) printf("piboardRev: Hardware string: %s\n", line); if (strstr(line, "sun7i") != NULL) { if (wiringPiDebug) printf("Hardware:%s\n", line); return 1; } else { if (wiringPiDebug) printf("Hardware:%s\n", line); return 0; } } /*end 2014.09.18*/ /*add for H3 guenter*/ int isH3(void) { FILE *cpuFd; char line [120]; char *d; if ((cpuFd = fopen("/proc/cpuinfo", "r")) == NULL) piBoardRevOops("Unable to open /proc/cpuinfo"); while (fgets(line, 120, cpuFd) != NULL) { if (strncmp(line, "Hardware", 8) == 0) break; } fclose(cpuFd); if (strncmp(line, "Hardware", 8) != 0) piBoardRevOops("No \"Hardware\" line"); for (d = &line [strlen(line) - 1]; (*d == '\n') || (*d == '\r'); --d) *d = 0; if (wiringPiDebug) printf("piboardRev: Hardware string: %s\n", line); if (strstr(line, "sun8i") != NULL) //guenter von sun7i auf sun8i { if (wiringPiDebug) printf("Hardware:%s\n", line); return 1; } else { if (wiringPiDebug) printf("Hardware:%s\n", line); return 0; } } /* guenter ende */ int piBoardRev(void) { /*add for orange pi guenter */ if (isH3()) //guenter if(isA20()) { version = BPRVER; if (wiringPiDebug) printf("piboardRev: %d\n", version); return BPRVER; } else { piBoardRevOops("Is not H3 based board"); } return 0; } /* * piBoardId: * Do more digging into the board revision string as above, but return * as much details as we can. * This is undocumented and really only intended for the GPIO command. * Use at your own risk! ********************************************************************************* */ void piBoardId(int *model, int *rev, int *mem, int *maker, int *overVolted) { FILE *cpuFd; char line [120]; char *c; (void) piBoardRev(); // Call this first to make sure all's OK. Don't care about the result. if ((cpuFd = fopen("/proc/cpuinfo", "r")) == NULL) piBoardRevOops("Unable to open /proc/cpuinfo"); while (fgets(line, 120, cpuFd) != NULL) if (strncmp(line, "Revision", 8) == 0) break; fclose(cpuFd); if (strncmp(line, "Revision", 8) != 0) piBoardRevOops("No \"Revision\" line"); // Chomp trailing CR/NL for (c = &line [strlen(line) - 1]; (*c == '\n') || (*c == '\r'); --c) *c = 0; if (wiringPiDebug) printf("piboardId: Revision string: %s\n", line); // Scan to first digit for (c = line; *c; ++c) if (isdigit(*c)) break; // Make sure its long enough if (strlen(c) < 4) piBoardRevOops("Bogus \"Revision\" line"); // If longer than 4, we'll assume it's been overvolted *overVolted = strlen(c) > 4; // Extract last 4 characters: c = c + strlen(c) - 4; // Fill out the replys as appropriate if (strcmp(c, "0000") == 0) { *model = PI_MODEL_M1; *rev = PI_VERSION_1_2; *mem = 1024; *maker = PI_MAKER_LEMAKER; } //end 2014.09.30 else { *model = 0; *rev = 0; *mem = 0; *maker = 0; } } /* * wpiPinToGpio: * Translate a wiringPi Pin number to native GPIO pin number. * Provided for external support. ********************************************************************************* */ int wpiPinToGpio(int wpiPin) { return pinToGpio [wpiPin & 63]; } /* * physPinToGpio: * Translate a physical Pin number to native GPIO pin number. * Provided for external support. ********************************************************************************* */ int physPinToGpio(int physPin) { return physToGpio [physPin & 63]; } /* * physPinToGpio: * Translate a physical Pin number to wiringPi pin number. add by lemaker team for BananaPi * Provided for external support. ********************************************************************************* */ int physPinToPin(int physPin) { return physToPin [physPin & 63]; } /* * setPadDrive: * Set the PAD driver value ********************************************************************************* */ void setPadDrive(int group, int value) { return; } /* * getAlt: * Returns the ALT bits for a given port. Only really of-use * for the gpio readall command (I think) ********************************************************************************* */ int getAlt(int pin) { int alt; pin &= 63; //printf("[%s:L%d] the pin:%d mode: %d is invaild,please check it over!\n", __func__, __LINE__, pin, wiringPiMode); if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin]; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin]; else if (wiringPiMode == WPI_MODE_GPIO) pin = pinTobcm_BP[pin]; //need map A20 to bcm else return 0; if (-1 == pin) { printf("[%s:L%d] the pin:%d mode: %d is invaild,please check it over!\n", __func__, __LINE__, pin, wiringPiMode); return -1; } alt = sunxi_get_gpio_mode(pin); return alt; } /* * pwmSetMode: * Select the native "balanced" mode, or standard mark:space mode ********************************************************************************* */ void pwmSetMode(int mode) { sunxi_pwm_set_mode(mode); return; } /* * pwmSetRange: * Set the PWM range register. We set both range registers to the same * value. If you want different in your own code, then write your own. ********************************************************************************* */ void pwmSetRange(unsigned int range) { sunxi_pwm_set_period(range); return; } /* * pwmSetClock: * Set/Change the PWM clock. Originally my code, but changed * (for the better!) by Chris Hall, * after further study of the manual and testing with a 'scope ********************************************************************************* */ void pwmSetClock(int divisor) { sunxi_pwm_set_clk(divisor); sunxi_pwm_set_enable(1); return; } /* * gpioClockSet: * Set the freuency on a GPIO clock pin ********************************************************************************* */ void gpioClockSet(int pin, int freq) { return; } /* * wiringPiFindNode: * Locate our device node ********************************************************************************* */ struct wiringPiNodeStruct *wiringPiFindNode(int pin) { struct wiringPiNodeStruct *node = wiringPiNodes; while (node != NULL) if ((pin >= node->pinBase) && (pin <= node->pinMax)) return node; else node = node->next; return NULL; } /* * wiringPiNewNode: * Create a new GPIO node into the wiringPi handling system ********************************************************************************* */ static void pinModeDummy(struct wiringPiNodeStruct *node, int pin, int mode) { return; } static void pullUpDnControlDummy(struct wiringPiNodeStruct *node, int pin, int pud) { return; } static int digitalReadDummy(struct wiringPiNodeStruct *node, int pin) { return LOW; } static void digitalWriteDummy(struct wiringPiNodeStruct *node, int pin, int value) { return; } static void pwmWriteDummy(struct wiringPiNodeStruct *node, int pin, int value) { return; } static int analogReadDummy(struct wiringPiNodeStruct *node, int pin) { return 0; } static void analogWriteDummy(struct wiringPiNodeStruct *node, int pin, int value) { return; } struct wiringPiNodeStruct *wiringPiNewNode(int pinBase, int numPins) { int pin; struct wiringPiNodeStruct *node; // Minimum pin base is 64 if (pinBase < 64) (void)wiringPiFailure(WPI_FATAL, "wiringPiNewNode: pinBase of %d is < 64\n", pinBase); // Check all pins in-case there is overlap: for (pin = pinBase; pin < (pinBase + numPins); ++pin) if (wiringPiFindNode(pin) != NULL) (void)wiringPiFailure(WPI_FATAL, "wiringPiNewNode: Pin %d overlaps with existing definition\n", pin); node = (struct wiringPiNodeStruct *) calloc(sizeof (struct wiringPiNodeStruct), 1); // calloc zeros if (node == NULL) (void)wiringPiFailure(WPI_FATAL, "wiringPiNewNode: Unable to allocate memory: %s\n", strerror(errno)); node->pinBase = pinBase; node->pinMax = pinBase + numPins - 1; node->pinMode = pinModeDummy; node->pullUpDnControl = pullUpDnControlDummy; node->digitalRead = digitalReadDummy; node->digitalWrite = digitalWriteDummy; node->pwmWrite = pwmWriteDummy; node->analogRead = analogReadDummy; node->analogWrite = analogWriteDummy; node->next = wiringPiNodes; wiringPiNodes = node; return node; } /* ********************************************************************************* * Core Functions ********************************************************************************* */ /* * pinModeAlt: * This is an un-documented special to let you set any pin to any mode ********************************************************************************* */ void pinModeAlt(int pin, int mode) { return; } /* * pinMode: * Sets the mode of a pin to be input, output or PWM output ********************************************************************************* */ void pinMode(int pin, int mode) { struct wiringPiNodeStruct *node = wiringPiNodes; if (wiringPiDebug) printf("%s,%d,pin:%d,mode:%d\n", __func__, __LINE__, pin, mode); if ((pin & PI_GPIO_MASK) == 0) // On-board pin { if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin]; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin]; else if (wiringPiMode == WPI_MODE_GPIO) pin = pinTobcm_BP[pin]; //need map A20 to bcm else return; if (-1 == pin) /*VCC or GND return directly*/ { //printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return; } if (mode == INPUT) { sunxi_set_gpio_mode(pin, INPUT); wiringPinMode = INPUT; return; } else if (mode == OUTPUT) { sunxi_set_gpio_mode(pin, OUTPUT); //gootoomoon_set_mode wiringPinMode = OUTPUT; return; } else if (mode == PWM_OUTPUT) { if (pin != 259) { printf("the pin you choose doesn't support hardware PWM\n"); printf("you can select PI3 for PWM pin\n"); printf("or you can use it in softPwm mode\n"); return; } //printf("you choose the hardware PWM:%d\n", 1); sunxi_set_gpio_mode(pin, PWM_OUTPUT); wiringPinMode = PWM_OUTPUT; return; } else return; } else { if ((node = wiringPiFindNode(pin)) != NULL) node->pinMode(node, pin, mode); return; } } /* * pullUpDownCtrl: * Control the internal pull-up/down resistors on a GPIO pin * The Arduino only has pull-ups and these are enabled by writing 1 * to a port when in input mode - this paradigm doesn't quite apply * here though. ********************************************************************************* */ void pullUpDnControl(int pin, int pud) { struct wiringPiNodeStruct *node = wiringPiNodes; pud = upDnConvert[pud]; if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin]; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin]; else if (wiringPiMode == WPI_MODE_GPIO) pin = pinTobcm_BP[pin]; //need map A20 to bcm else return; if (wiringPiDebug) printf("%s,%d,pin:%d\n", __func__, __LINE__, pin); if (-1 == pin) { printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return; } pud &= 3; sunxi_pullUpDnControl(pin, pud); return; } else // Extension module { if ((node = wiringPiFindNode(pin)) != NULL) node->pullUpDnControl(node, pin, pud); return; } } /* * digitalRead: * Read the value of a given Pin, returning HIGH or LOW ********************************************************************************* */ int digitalRead(int pin) { char c; struct wiringPiNodeStruct *node = wiringPiNodes; if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode { if (pin == 0) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return 0; } if (syspin[pin] == -1) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return 0; } if (sysFds [pin] == -1) { if (wiringPiDebug) printf("pin %d sysFds -1.%s,%d\n", pin, __func__, __LINE__); return LOW; } if (wiringPiDebug) printf("pin %d :%d.%s,%d\n", pin, sysFds [pin], __func__, __LINE__); lseek(sysFds [pin], 0L, SEEK_SET); read(sysFds [pin], &c, 1); return (c == '0') ? LOW : HIGH; } else if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin]; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin]; else if (wiringPiMode == WPI_MODE_GPIO) pin = pinTobcm_BP[pin]; //need map A20 to bcm else return LOW; if (-1 == pin) { printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return LOW; } return sunxi_digitalRead(pin); } else { if ((node = wiringPiFindNode(pin)) == NULL) return LOW; return node->digitalRead(node, pin); } } /* * digitalWrite: * Set an output bit ********************************************************************************* */ void digitalWrite(int pin, int value) { struct wiringPiNodeStruct *node = wiringPiNodes; if (wiringPiDebug) printf("%s,%d\n", __func__, __LINE__); if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { /**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode { if (wiringPiDebug) { printf("%d %s,%d invalid pin,please check it over.\n", pin, __func__, __LINE__); } if (pin == 0) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return; } if (syspin[pin] == -1) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return; } if (sysFds [pin] == -1) { if (wiringPiDebug) printf("pin %d sysFds -1.%s,%d\n", pin, __func__, __LINE__); } if (sysFds [pin] != -1) { if (wiringPiDebug) printf("pin %d :%d.%s,%d\n", pin, sysFds [pin], __func__, __LINE__); if (value == LOW) write(sysFds [pin], "0\n", 2); else write(sysFds [pin], "1\n", 2); } return; } else if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin]; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin]; else if (wiringPiMode == WPI_MODE_GPIO) pin = pinTobcm_BP[pin]; //need map A20 to bcm else return; if (-1 == pin) { //printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return; } sunxi_digitalWrite(pin, value); } else { if ((node = wiringPiFindNode(pin)) != NULL) node->digitalWrite(node, pin, value); } return; } /* * pwmWrite: * Set an output PWM value ********************************************************************************* */ void pwmWrite(int pin, int value) { struct wiringPiNodeStruct *node = wiringPiNodes; uint32_t a_val = 0; if (pwmmode == 1)//sycle { sunxi_pwm_set_mode(1); } else { //sunxi_pwm_set_mode(0); } if (pin < MAX_PIN_NUM) // On-Board Pin needto fix me Jim { if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin]; else if (wiringPiMode == WPI_MODE_PHYS) { pin = physToGpio_BP[pin]; } else if (wiringPiMode == WPI_MODE_GPIO) pin = pinTobcm_BP[pin]; //need map A20 to bcm else return; if (-1 == pin) { printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return; } if (pin != 259) { printf("please use soft pwmmode or choose PWM pin\n"); return; } a_val = sunxi_pwm_get_period(); if (wiringPiDebug) printf("==> no:%d period now is :%d,act_val to be set:%d\n", __LINE__, a_val, value); if (value > a_val) { printf("val pwmWrite 0 <= X <= 1024\n"); printf("Or you can set new range by yourself by pwmSetRange(range\n"); return; } //if value changed chang it sunxi_pwm_set_enable(0); sunxi_pwm_set_act(value); sunxi_pwm_set_enable(1); } else { printf("not on board :%s,%d\n", __func__, __LINE__); if ((node = wiringPiFindNode(pin)) != NULL) { if (wiringPiDebug) printf("Jim find node%s,%d\n", __func__, __LINE__); node->digitalWrite(node, pin, value); } } if (wiringPiDebug) printf("this fun is ok now %s,%d\n", __func__, __LINE__); return; } /* * analogRead: * Read the analog value of a given Pin. * There is no on-board Pi analog hardware, * so this needs to go to a new node. ********************************************************************************* */ int analogRead(int pin) { struct wiringPiNodeStruct *node = wiringPiNodes; if ((node = wiringPiFindNode(pin)) == NULL) return 0; else return node->analogRead(node, pin); } /* * analogWrite: * Write the analog value to the given Pin. * There is no on-board Pi analog hardware, * so this needs to go to a new node. ********************************************************************************* */ void analogWrite(int pin, int value) { struct wiringPiNodeStruct *node = wiringPiNodes; if ((node = wiringPiFindNode(pin)) == NULL) return; node->analogWrite(node, pin, value); } /* * pwmToneWrite: * Pi Specific. * Output the given frequency on the Pi's PWM pin ********************************************************************************* */ void pwmToneWrite(int pin, int freq) { int range; if (freq == 0) pwmWrite(pin, 0); // Off else { range = 600000 / freq; pwmSetRange(range); pwmWrite(pin, freq / 2); } } /* * digitalWriteByte: * Pi Specific * Write an 8-bit byte to the first 8 GPIO pins - try to do it as * fast as possible. * However it still needs 2 operations to set the bits, so any external * hardware must not rely on seeing a change as there will be a change * to set the outputs bits to zero, then another change to set the 1's ********************************************************************************* */ static int head2win[8] = {11, 12, 13, 15, 16, 18, 22, 7}; /*add for BananaPro by lemaker team*/ void digitalWriteByte(int value) { int mask = 1; int pin; if (wiringPiMode == WPI_MODE_GPIO_SYS || wiringPiMode == WPI_MODE_GPIO) { for (pin = 0; pin < 8; ++pin) { pinMode(pin, OUTPUT); delay(1); digitalWrite(pinToGpio [pin], value & mask); mask <<= 1; } } else if (wiringPiMode == WPI_MODE_PINS) { for (pin = 0; pin < 8; ++pin) { pinMode(pin, OUTPUT); delay(1); digitalWrite(pin, value & mask); mask <<= 1; } } else { for (pin = 0; pin < 8; ++pin) { pinMode(head2win[pin], OUTPUT); delay(1); digitalWrite(head2win[pin], value & mask); mask <<= 1; } } return; } /* * waitForInterrupt: * Pi Specific. * Wait for Interrupt on a GPIO pin. * This is actually done via the /sys/class/gpio interface regardless of * the wiringPi access mode in-use. Maybe sometime it might get a better * way for a bit more efficiency. ********************************************************************************* */ int waitForInterrupt(int pin, int mS) { int fd, x; uint8_t c; struct pollfd polls; /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin]; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin]; if ((fd = sysFds [pin]) == -1) return -2; // Setup poll structure polls.fd = fd; polls.events = POLLPRI; // Urgent data! // Wait for it ... x = poll(&polls, 1, mS); // Do a dummy read to clear the interrupt // A one character read appars to be enough. (void) read(fd, &c, 1); return x; } /* * interruptHandler: * This is a thread and gets started to wait for the interrupt we're * hoping to catch. It will call the user-function when the interrupt * fires. ********************************************************************************* */ static void *interruptHandler(void *arg) { int myPin; (void) piHiPri(55); // Only effective if we run as root myPin = pinPass; pinPass = -1; for (;;) if (waitForInterrupt(myPin, -1) > 0) isrFunctions [myPin] (); return NULL; } /* * wiringPiISR: * Pi Specific. * Take the details and create an interrupt handler that will do a call- * back to the user supplied function. ********************************************************************************* */ int wiringPiISR(int pin, int mode, void (*function)(void)) { int bcmGpioPin; if ((pin < 0) || (pin > 63)) return wiringPiFailure(WPI_FATAL, "wiringPiISR: pin must be 0-63 (%d)\n", pin); /**/ if (wiringPiMode == WPI_MODE_UNINITIALISED) return wiringPiFailure(WPI_FATAL, "wiringPiISR: wiringPi has not been initialised. Unable to continue.\n"); else if (wiringPiMode == WPI_MODE_PINS) bcmGpioPin = pinToGpio [pin]; else if (wiringPiMode == WPI_MODE_PHYS) bcmGpioPin = physToGpio [pin]; else bcmGpioPin = pin; if (-1 == bcmGpioPin) /**/ { printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return -1; } if (edge[bcmGpioPin] == -1) return wiringPiFailure(WPI_FATAL, "wiringPiISR: pin not sunpprt on bananaPi (%d,%d)\n", pin, bcmGpioPin); } /* * initialiseEpoch: * Initialise our start-of-time variable to be the current unix * time in milliseconds and microseconds. ********************************************************************************* */ static void initialiseEpoch(void) { struct timeval tv; gettimeofday(&tv, NULL); epochMilli = (uint64_t) tv.tv_sec * (uint64_t) 1000 + (uint64_t) (tv.tv_usec / 1000); epochMicro = (uint64_t) tv.tv_sec * (uint64_t) 1000000 + (uint64_t) (tv.tv_usec); } /* * delay: * Wait for some number of milliseconds ********************************************************************************* */ void delay(unsigned int howLong) { struct timespec sleeper, dummy; sleeper.tv_sec = (time_t) (howLong / 1000); sleeper.tv_nsec = (long) (howLong % 1000) * 1000000; nanosleep(&sleeper, &dummy); } /* * delayMicroseconds: * This is somewhat intersting. It seems that on the Pi, a single call * to nanosleep takes some 80 to 130 microseconds anyway, so while * obeying the standards (may take longer), it's not always what we * want! * * So what I'll do now is if the delay is less than 100uS we'll do it * in a hard loop, watching a built-in counter on the ARM chip. This is * somewhat sub-optimal in that it uses 100% CPU, something not an issue * in a microcontroller, but under a multi-tasking, multi-user OS, it's * wastefull, however we've no real choice )-: * * Plan B: It seems all might not be well with that plan, so changing it * to use gettimeofday () and poll on that instead... ********************************************************************************* */ void delayMicrosecondsHard(unsigned int howLong) { struct timeval tNow, tLong, tEnd; gettimeofday(&tNow, NULL); tLong.tv_sec = howLong / 1000000; tLong.tv_usec = howLong % 1000000; timeradd(&tNow, &tLong, &tEnd); while (timercmp(&tNow, &tEnd, <)) gettimeofday(&tNow, NULL); } void delayMicroseconds(unsigned int howLong) { struct timespec sleeper; unsigned int uSecs = howLong % 1000000; unsigned int wSecs = howLong / 1000000; /**/ if (howLong == 0) return; else if (howLong < 100) delayMicrosecondsHard(howLong); else { sleeper.tv_sec = wSecs; sleeper.tv_nsec = (long) (uSecs * 1000L); nanosleep(&sleeper, NULL); } } /* * millis: * Return a number of milliseconds as an unsigned int. ********************************************************************************* */ unsigned int millis(void) { struct timeval tv; uint64_t now; gettimeofday(&tv, NULL); now = (uint64_t) tv.tv_sec * (uint64_t) 1000 + (uint64_t) (tv.tv_usec / 1000); return (uint32_t) (now - epochMilli); } /* * micros: * Return a number of microseconds as an unsigned int. ********************************************************************************* */ unsigned int micros(void) { struct timeval tv; uint64_t now; gettimeofday(&tv, NULL); now = (uint64_t) tv.tv_sec * (uint64_t) 1000000 + (uint64_t) tv.tv_usec; return (uint32_t) (now - epochMicro); } /* * wiringPiSetup: * Must be called once at the start of your program execution. * * Default setup: Initialises the system into wiringPi Pin mode and uses the * memory mapped hardware directly. * * Changed now to revert to "gpio" mode if we're running on a Compute Module. ********************************************************************************* */ int wiringPiSetup(void) { int fd; // int boardRev; int model, rev, mem, maker, overVolted; if (getenv(ENV_DEBUG) != NULL) wiringPiDebug = TRUE; if (getenv(ENV_CODES) != NULL) wiringPiReturnCodes = TRUE; if (geteuid() != 0) (void)wiringPiFailure(WPI_FATAL, "wiringPiSetup: Must be root. (Did you forget sudo?)\n"); if (wiringPiDebug) printf("wiringPi: wiringPiSetup called\n"); // boardRev = piBoardRev(); pinToGpio = pinToGpioR3; physToGpio = physToGpioR3; physToPin = physToPinR3; // Open the master /dev/memory device if ((fd = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) return wiringPiFailure(WPI_ALMOST, "wiringPiSetup: Unable to open /dev/mem: %s\n", strerror(errno)); // GPIO: gpio = (uint32_t *) mmap(0, BLOCK_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, GPIO_BASE_BP); if ((int32_t) gpio == -1) return wiringPiFailure(WPI_ALMOST, "wiringPiSetup: mmap (GPIO) failed: %s\n", strerror(errno)); // PWM pwm = (uint32_t *) mmap(0, BLOCK_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, GPIO_PWM_BP); if ((int32_t) pwm == -1) return wiringPiFailure(WPI_ALMOST, "wiringPiSetup: mmap (PWM) failed: %s\n", strerror(errno)); // Clock control (needed for PWM) clk = (uint32_t *) mmap(0, BLOCK_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, CLOCK_BASE_BP); if ((int32_t) clk == -1) return wiringPiFailure(WPI_ALMOST, "wiringPiSetup: mmap (CLOCK) failed: %s\n", strerror(errno)); // The drive pads pads = (uint32_t *) mmap(0, BLOCK_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, GPIO_PADS_BP); if ((int32_t) pads == -1) return wiringPiFailure(WPI_ALMOST, "wiringPiSetup: mmap (PADS) failed: %s\n", strerror(errno)); initialiseEpoch(); // If we're running on a compute module, then wiringPi pin numbers don't really many anything... piBoardId(&model, &rev, &mem, &maker, &overVolted); wiringPiMode = WPI_MODE_PINS; return 0; } /* * wiringPiSetupGpio: * Must be called once at the start of your program execution. * * GPIO setup: Initialises the system into GPIO Pin mode and uses the * memory mapped hardware directly. ********************************************************************************* */ int wiringPiSetupGpio(void) { (void) wiringPiSetup(); if (wiringPiDebug) printf("wiringPi: wiringPiSetupGpio called\n"); wiringPiMode = WPI_MODE_GPIO; return 0; } /* * wiringPiSetupPhys: * Must be called once at the start of your program execution. * * Phys setup: Initialises the system into Physical Pin mode and uses the * memory mapped hardware directly. ********************************************************************************* */ int wiringPiSetupPhys(void) { (void) wiringPiSetup(); if (wiringPiDebug) printf("wiringPi: wiringPiSetupPhys called\n"); wiringPiMode = WPI_MODE_PHYS; return 0; } /* * wiringPiSetupSys: * Must be called once at the start of your program execution. * * Initialisation (again), however this time we are using the /sys/class/gpio * interface to the GPIO systems - slightly slower, but always usable as * a non-root user, assuming the devices are already exported and setup correctly. */ int wiringPiSetupSys(void) { //int boardRev; int pin; char fName [128]; if (getenv(ENV_DEBUG) != NULL) wiringPiDebug = TRUE; if (getenv(ENV_CODES) != NULL) wiringPiReturnCodes = TRUE; if (wiringPiDebug) printf("wiringPi: wiringPiSetupSys called\n"); //boardRev = piBoardRev(); pinToGpio = pinToGpio_BP; physToGpio = physToGpio_BP; physToPin = physToPin; for (pin = 1; pin < 32; ++pin) { sprintf(fName, "/sys/class/gpio/gpio%d/value", pin); sysFds [pin] = open(fName, O_RDWR); } initialiseEpoch(); wiringPiMode = WPI_MODE_GPIO_SYS; return 0; }