lib: Bring in argon2 library

This library is used for full-disk encryption with LUKS, so bring it in
from https://github.com/P-H-C/phc-winner-argon2 commit:

   f57e61e Merge pull request #321 from bittorf/fix-spelling-mistakes

Co-developed-by: Claude <noreply@anthropic.com>
Signed-off-by: Simon Glass <simon.glass@canonical.com>
This commit is contained in:
Simon Glass
2025-11-11 03:37:46 -07:00
parent 5da98448d8
commit 3c7c70b0d2
9 changed files with 2650 additions and 0 deletions

452
lib/argon2/argon2.c Normal file
View File

@@ -0,0 +1,452 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "argon2.h"
#include "encoding.h"
#include "core.h"
const char *argon2_type2string(argon2_type type, int uppercase) {
switch (type) {
case Argon2_d:
return uppercase ? "Argon2d" : "argon2d";
case Argon2_i:
return uppercase ? "Argon2i" : "argon2i";
case Argon2_id:
return uppercase ? "Argon2id" : "argon2id";
}
return NULL;
}
int argon2_ctx(argon2_context *context, argon2_type type) {
/* 1. Validate all inputs */
int result = validate_inputs(context);
uint32_t memory_blocks, segment_length;
argon2_instance_t instance;
if (ARGON2_OK != result) {
return result;
}
if (Argon2_d != type && Argon2_i != type && Argon2_id != type) {
return ARGON2_INCORRECT_TYPE;
}
/* 2. Align memory size */
/* Minimum memory_blocks = 8L blocks, where L is the number of lanes */
memory_blocks = context->m_cost;
if (memory_blocks < 2 * ARGON2_SYNC_POINTS * context->lanes) {
memory_blocks = 2 * ARGON2_SYNC_POINTS * context->lanes;
}
segment_length = memory_blocks / (context->lanes * ARGON2_SYNC_POINTS);
/* Ensure that all segments have equal length */
memory_blocks = segment_length * (context->lanes * ARGON2_SYNC_POINTS);
instance.version = context->version;
instance.memory = NULL;
instance.passes = context->t_cost;
instance.memory_blocks = memory_blocks;
instance.segment_length = segment_length;
instance.lane_length = segment_length * ARGON2_SYNC_POINTS;
instance.lanes = context->lanes;
instance.threads = context->threads;
instance.type = type;
if (instance.threads > instance.lanes) {
instance.threads = instance.lanes;
}
/* 3. Initialization: Hashing inputs, allocating memory, filling first
* blocks
*/
result = initialize(&instance, context);
if (ARGON2_OK != result) {
return result;
}
/* 4. Filling memory */
result = fill_memory_blocks(&instance);
if (ARGON2_OK != result) {
return result;
}
/* 5. Finalization */
finalize(context, &instance);
return ARGON2_OK;
}
int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt, const size_t saltlen,
void *hash, const size_t hashlen, char *encoded,
const size_t encodedlen, argon2_type type,
const uint32_t version){
argon2_context context;
int result;
uint8_t *out;
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
return ARGON2_PWD_TOO_LONG;
}
if (saltlen > ARGON2_MAX_SALT_LENGTH) {
return ARGON2_SALT_TOO_LONG;
}
if (hashlen > ARGON2_MAX_OUTLEN) {
return ARGON2_OUTPUT_TOO_LONG;
}
if (hashlen < ARGON2_MIN_OUTLEN) {
return ARGON2_OUTPUT_TOO_SHORT;
}
out = malloc(hashlen);
if (!out) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
context.out = (uint8_t *)out;
context.outlen = (uint32_t)hashlen;
context.pwd = CONST_CAST(uint8_t *)pwd;
context.pwdlen = (uint32_t)pwdlen;
context.salt = CONST_CAST(uint8_t *)salt;
context.saltlen = (uint32_t)saltlen;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.t_cost = t_cost;
context.m_cost = m_cost;
context.lanes = parallelism;
context.threads = parallelism;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = ARGON2_DEFAULT_FLAGS;
context.version = version;
result = argon2_ctx(&context, type);
if (result != ARGON2_OK) {
clear_internal_memory(out, hashlen);
free(out);
return result;
}
/* if raw hash requested, write it */
if (hash) {
memcpy(hash, out, hashlen);
}
/* if encoding requested, write it */
if (encoded && encodedlen) {
if (encode_string(encoded, encodedlen, &context, type) != ARGON2_OK) {
clear_internal_memory(out, hashlen); /* wipe buffers if error */
clear_internal_memory(encoded, encodedlen);
free(out);
return ARGON2_ENCODING_FAIL;
}
}
clear_internal_memory(out, hashlen);
free(out);
return ARGON2_OK;
}
int argon2i_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_i,
ARGON2_VERSION_NUMBER);
}
int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_i, ARGON2_VERSION_NUMBER);
}
int argon2d_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_d,
ARGON2_VERSION_NUMBER);
}
int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_d, ARGON2_VERSION_NUMBER);
}
int argon2id_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_id,
ARGON2_VERSION_NUMBER);
}
int argon2id_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_id,
ARGON2_VERSION_NUMBER);
}
static int argon2_compare(const uint8_t *b1, const uint8_t *b2, size_t len) {
size_t i;
uint8_t d = 0U;
for (i = 0U; i < len; i++) {
d |= b1[i] ^ b2[i];
}
return (int)((1 & ((d - 1) >> 8)) - 1);
}
int argon2_verify(const char *encoded, const void *pwd, const size_t pwdlen,
argon2_type type) {
argon2_context ctx;
uint8_t *desired_result = NULL;
int ret = ARGON2_OK;
size_t encoded_len;
uint32_t max_field_len;
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
return ARGON2_PWD_TOO_LONG;
}
if (encoded == NULL) {
return ARGON2_DECODING_FAIL;
}
encoded_len = strlen(encoded);
if (encoded_len > UINT32_MAX) {
return ARGON2_DECODING_FAIL;
}
/* No field can be longer than the encoded length */
max_field_len = (uint32_t)encoded_len;
ctx.saltlen = max_field_len;
ctx.outlen = max_field_len;
ctx.salt = malloc(ctx.saltlen);
ctx.out = malloc(ctx.outlen);
if (!ctx.salt || !ctx.out) {
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
ctx.pwd = (uint8_t *)pwd;
ctx.pwdlen = (uint32_t)pwdlen;
ret = decode_string(&ctx, encoded, type);
if (ret != ARGON2_OK) {
goto fail;
}
/* Set aside the desired result, and get a new buffer. */
desired_result = ctx.out;
ctx.out = malloc(ctx.outlen);
if (!ctx.out) {
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
ret = argon2_verify_ctx(&ctx, (char *)desired_result, type);
if (ret != ARGON2_OK) {
goto fail;
}
fail:
free(ctx.salt);
free(ctx.out);
free(desired_result);
return ret;
}
int argon2i_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_i);
}
int argon2d_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_d);
}
int argon2id_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_id);
}
int argon2d_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_d);
}
int argon2i_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_i);
}
int argon2id_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_id);
}
int argon2_verify_ctx(argon2_context *context, const char *hash,
argon2_type type) {
int ret = argon2_ctx(context, type);
if (ret != ARGON2_OK) {
return ret;
}
if (argon2_compare((uint8_t *)hash, context->out, context->outlen)) {
return ARGON2_VERIFY_MISMATCH;
}
return ARGON2_OK;
}
int argon2d_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_d);
}
int argon2i_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_i);
}
int argon2id_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_id);
}
const char *argon2_error_message(int error_code) {
switch (error_code) {
case ARGON2_OK:
return "OK";
case ARGON2_OUTPUT_PTR_NULL:
return "Output pointer is NULL";
case ARGON2_OUTPUT_TOO_SHORT:
return "Output is too short";
case ARGON2_OUTPUT_TOO_LONG:
return "Output is too long";
case ARGON2_PWD_TOO_SHORT:
return "Password is too short";
case ARGON2_PWD_TOO_LONG:
return "Password is too long";
case ARGON2_SALT_TOO_SHORT:
return "Salt is too short";
case ARGON2_SALT_TOO_LONG:
return "Salt is too long";
case ARGON2_AD_TOO_SHORT:
return "Associated data is too short";
case ARGON2_AD_TOO_LONG:
return "Associated data is too long";
case ARGON2_SECRET_TOO_SHORT:
return "Secret is too short";
case ARGON2_SECRET_TOO_LONG:
return "Secret is too long";
case ARGON2_TIME_TOO_SMALL:
return "Time cost is too small";
case ARGON2_TIME_TOO_LARGE:
return "Time cost is too large";
case ARGON2_MEMORY_TOO_LITTLE:
return "Memory cost is too small";
case ARGON2_MEMORY_TOO_MUCH:
return "Memory cost is too large";
case ARGON2_LANES_TOO_FEW:
return "Too few lanes";
case ARGON2_LANES_TOO_MANY:
return "Too many lanes";
case ARGON2_PWD_PTR_MISMATCH:
return "Password pointer is NULL, but password length is not 0";
case ARGON2_SALT_PTR_MISMATCH:
return "Salt pointer is NULL, but salt length is not 0";
case ARGON2_SECRET_PTR_MISMATCH:
return "Secret pointer is NULL, but secret length is not 0";
case ARGON2_AD_PTR_MISMATCH:
return "Associated data pointer is NULL, but ad length is not 0";
case ARGON2_MEMORY_ALLOCATION_ERROR:
return "Memory allocation error";
case ARGON2_FREE_MEMORY_CBK_NULL:
return "The free memory callback is NULL";
case ARGON2_ALLOCATE_MEMORY_CBK_NULL:
return "The allocate memory callback is NULL";
case ARGON2_INCORRECT_PARAMETER:
return "Argon2_Context context is NULL";
case ARGON2_INCORRECT_TYPE:
return "There is no such version of Argon2";
case ARGON2_OUT_PTR_MISMATCH:
return "Output pointer mismatch";
case ARGON2_THREADS_TOO_FEW:
return "Not enough threads";
case ARGON2_THREADS_TOO_MANY:
return "Too many threads";
case ARGON2_MISSING_ARGS:
return "Missing arguments";
case ARGON2_ENCODING_FAIL:
return "Encoding failed";
case ARGON2_DECODING_FAIL:
return "Decoding failed";
case ARGON2_THREAD_FAIL:
return "Threading failure";
case ARGON2_DECODING_LENGTH_FAIL:
return "Some of encoded parameters are too long or too short";
case ARGON2_VERIFY_MISMATCH:
return "The password does not match the supplied hash";
default:
return "Unknown error code";
}
}
size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism,
uint32_t saltlen, uint32_t hashlen, argon2_type type) {
return strlen("$$v=$m=,t=,p=$$") + strlen(argon2_type2string(type, 0)) +
numlen(t_cost) + numlen(m_cost) + numlen(parallelism) +
b64len(saltlen) + b64len(hashlen) + numlen(ARGON2_VERSION_NUMBER) + 1;
}

437
lib/argon2/argon2.h Normal file
View File

@@ -0,0 +1,437 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef ARGON2_H
#define ARGON2_H
#include <stdint.h>
#include <stddef.h>
#include <limits.h>
#if defined(__cplusplus)
extern "C" {
#endif
/* Symbols visibility control */
#ifdef A2_VISCTL
#define ARGON2_PUBLIC __attribute__((visibility("default")))
#define ARGON2_LOCAL __attribute__ ((visibility ("hidden")))
#elif defined(_MSC_VER)
#define ARGON2_PUBLIC __declspec(dllexport)
#define ARGON2_LOCAL
#else
#define ARGON2_PUBLIC
#define ARGON2_LOCAL
#endif
/*
* Argon2 input parameter restrictions
*/
/* Minimum and maximum number of lanes (degree of parallelism) */
#define ARGON2_MIN_LANES UINT32_C(1)
#define ARGON2_MAX_LANES UINT32_C(0xFFFFFF)
/* Minimum and maximum number of threads */
#define ARGON2_MIN_THREADS UINT32_C(1)
#define ARGON2_MAX_THREADS UINT32_C(0xFFFFFF)
/* Number of synchronization points between lanes per pass */
#define ARGON2_SYNC_POINTS UINT32_C(4)
/* Minimum and maximum digest size in bytes */
#define ARGON2_MIN_OUTLEN UINT32_C(4)
#define ARGON2_MAX_OUTLEN UINT32_C(0xFFFFFFFF)
/* Minimum and maximum number of memory blocks (each of BLOCK_SIZE bytes) */
#define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS) /* 2 blocks per slice */
#define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
/* Max memory size is addressing-space/2, topping at 2^32 blocks (4 TB) */
#define ARGON2_MAX_MEMORY_BITS \
ARGON2_MIN(UINT32_C(32), (sizeof(void *) * CHAR_BIT - 10 - 1))
#define ARGON2_MAX_MEMORY \
ARGON2_MIN(UINT32_C(0xFFFFFFFF), UINT64_C(1) << ARGON2_MAX_MEMORY_BITS)
/* Minimum and maximum number of passes */
#define ARGON2_MIN_TIME UINT32_C(1)
#define ARGON2_MAX_TIME UINT32_C(0xFFFFFFFF)
/* Minimum and maximum password length in bytes */
#define ARGON2_MIN_PWD_LENGTH UINT32_C(0)
#define ARGON2_MAX_PWD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum associated data length in bytes */
#define ARGON2_MIN_AD_LENGTH UINT32_C(0)
#define ARGON2_MAX_AD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum salt length in bytes */
#define ARGON2_MIN_SALT_LENGTH UINT32_C(8)
#define ARGON2_MAX_SALT_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum key length in bytes */
#define ARGON2_MIN_SECRET UINT32_C(0)
#define ARGON2_MAX_SECRET UINT32_C(0xFFFFFFFF)
/* Flags to determine which fields are securely wiped (default = no wipe). */
#define ARGON2_DEFAULT_FLAGS UINT32_C(0)
#define ARGON2_FLAG_CLEAR_PASSWORD (UINT32_C(1) << 0)
#define ARGON2_FLAG_CLEAR_SECRET (UINT32_C(1) << 1)
/* Global flag to determine if we are wiping internal memory buffers. This flag
* is defined in core.c and defaults to 1 (wipe internal memory). */
extern int FLAG_clear_internal_memory;
/* Error codes */
typedef enum Argon2_ErrorCodes {
ARGON2_OK = 0,
ARGON2_OUTPUT_PTR_NULL = -1,
ARGON2_OUTPUT_TOO_SHORT = -2,
ARGON2_OUTPUT_TOO_LONG = -3,
ARGON2_PWD_TOO_SHORT = -4,
ARGON2_PWD_TOO_LONG = -5,
ARGON2_SALT_TOO_SHORT = -6,
ARGON2_SALT_TOO_LONG = -7,
ARGON2_AD_TOO_SHORT = -8,
ARGON2_AD_TOO_LONG = -9,
ARGON2_SECRET_TOO_SHORT = -10,
ARGON2_SECRET_TOO_LONG = -11,
ARGON2_TIME_TOO_SMALL = -12,
ARGON2_TIME_TOO_LARGE = -13,
ARGON2_MEMORY_TOO_LITTLE = -14,
ARGON2_MEMORY_TOO_MUCH = -15,
ARGON2_LANES_TOO_FEW = -16,
ARGON2_LANES_TOO_MANY = -17,
ARGON2_PWD_PTR_MISMATCH = -18, /* NULL ptr with non-zero length */
ARGON2_SALT_PTR_MISMATCH = -19, /* NULL ptr with non-zero length */
ARGON2_SECRET_PTR_MISMATCH = -20, /* NULL ptr with non-zero length */
ARGON2_AD_PTR_MISMATCH = -21, /* NULL ptr with non-zero length */
ARGON2_MEMORY_ALLOCATION_ERROR = -22,
ARGON2_FREE_MEMORY_CBK_NULL = -23,
ARGON2_ALLOCATE_MEMORY_CBK_NULL = -24,
ARGON2_INCORRECT_PARAMETER = -25,
ARGON2_INCORRECT_TYPE = -26,
ARGON2_OUT_PTR_MISMATCH = -27,
ARGON2_THREADS_TOO_FEW = -28,
ARGON2_THREADS_TOO_MANY = -29,
ARGON2_MISSING_ARGS = -30,
ARGON2_ENCODING_FAIL = -31,
ARGON2_DECODING_FAIL = -32,
ARGON2_THREAD_FAIL = -33,
ARGON2_DECODING_LENGTH_FAIL = -34,
ARGON2_VERIFY_MISMATCH = -35
} argon2_error_codes;
/* Memory allocator types --- for external allocation */
typedef int (*allocate_fptr)(uint8_t **memory, size_t bytes_to_allocate);
typedef void (*deallocate_fptr)(uint8_t *memory, size_t bytes_to_allocate);
/* Argon2 external data structures */
/*
*****
* Context: structure to hold Argon2 inputs:
* output array and its length,
* password and its length,
* salt and its length,
* secret and its length,
* associated data and its length,
* number of passes, amount of used memory (in KBytes, can be rounded up a bit)
* number of parallel threads that will be run.
* All the parameters above affect the output hash value.
* Additionally, two function pointers can be provided to allocate and
* deallocate the memory (if NULL, memory will be allocated internally).
* Also, three flags indicate whether to erase password, secret as soon as they
* are pre-hashed (and thus not needed anymore), and the entire memory
*****
* Simplest situation: you have output array out[8], password is stored in
* pwd[32], salt is stored in salt[16], you do not have keys nor associated
* data. You need to spend 1 GB of RAM and you run 5 passes of Argon2d with
* 4 parallel lanes.
* You want to erase the password, but you're OK with last pass not being
* erased. You want to use the default memory allocator.
* Then you initialize:
Argon2_Context(out,8,pwd,32,salt,16,NULL,0,NULL,0,5,1<<20,4,4,NULL,NULL,true,false,false,false)
*/
typedef struct Argon2_Context {
uint8_t *out; /* output array */
uint32_t outlen; /* digest length */
uint8_t *pwd; /* password array */
uint32_t pwdlen; /* password length */
uint8_t *salt; /* salt array */
uint32_t saltlen; /* salt length */
uint8_t *secret; /* key array */
uint32_t secretlen; /* key length */
uint8_t *ad; /* associated data array */
uint32_t adlen; /* associated data length */
uint32_t t_cost; /* number of passes */
uint32_t m_cost; /* amount of memory requested (KB) */
uint32_t lanes; /* number of lanes */
uint32_t threads; /* maximum number of threads */
uint32_t version; /* version number */
allocate_fptr allocate_cbk; /* pointer to memory allocator */
deallocate_fptr free_cbk; /* pointer to memory deallocator */
uint32_t flags; /* array of bool options */
} argon2_context;
/* Argon2 primitive type */
typedef enum Argon2_type {
Argon2_d = 0,
Argon2_i = 1,
Argon2_id = 2
} argon2_type;
/* Version of the algorithm */
typedef enum Argon2_version {
ARGON2_VERSION_10 = 0x10,
ARGON2_VERSION_13 = 0x13,
ARGON2_VERSION_NUMBER = ARGON2_VERSION_13
} argon2_version;
/*
* Function that gives the string representation of an argon2_type.
* @param type The argon2_type that we want the string for
* @param uppercase Whether the string should have the first letter uppercase
* @return NULL if invalid type, otherwise the string representation.
*/
ARGON2_PUBLIC const char *argon2_type2string(argon2_type type, int uppercase);
/*
* Function that performs memory-hard hashing with certain degree of parallelism
* @param context Pointer to the Argon2 internal structure
* @return Error code if smth is wrong, ARGON2_OK otherwise
*/
ARGON2_PUBLIC int argon2_ctx(argon2_context *context, argon2_type type);
/**
* Hashes a password with Argon2i, producing an encoded hash
* @param t_cost Number of iterations
* @param m_cost Sets memory usage to m_cost kibibytes
* @param parallelism Number of threads and compute lanes
* @param pwd Pointer to password
* @param pwdlen Password size in bytes
* @param salt Pointer to salt
* @param saltlen Salt size in bytes
* @param hashlen Desired length of the hash in bytes
* @param encoded Buffer where to write the encoded hash
* @param encodedlen Size of the buffer (thus max size of the encoded hash)
* @pre Different parallelism levels will give different results
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2i_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
/**
* Hashes a password with Argon2i, producing a raw hash at @hash
* @param t_cost Number of iterations
* @param m_cost Sets memory usage to m_cost kibibytes
* @param parallelism Number of threads and compute lanes
* @param pwd Pointer to password
* @param pwdlen Password size in bytes
* @param salt Pointer to salt
* @param saltlen Salt size in bytes
* @param hash Buffer where to write the raw hash - updated by the function
* @param hashlen Desired length of the hash in bytes
* @pre Different parallelism levels will give different results
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
ARGON2_PUBLIC int argon2d_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
ARGON2_PUBLIC int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
ARGON2_PUBLIC int argon2id_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
ARGON2_PUBLIC int argon2id_hash_raw(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen, char *encoded,
const size_t encodedlen, argon2_type type,
const uint32_t version);
/**
* Verifies a password against an encoded string
* Encoded string is restricted as in validate_inputs()
* @param encoded String encoding parameters, salt, hash
* @param pwd Pointer to password
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2i_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
ARGON2_PUBLIC int argon2d_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
ARGON2_PUBLIC int argon2id_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_verify(const char *encoded, const void *pwd,
const size_t pwdlen, argon2_type type);
/**
* Argon2d: Version of Argon2 that picks memory blocks depending
* on the password and salt. Only for side-channel-free
* environment!!
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2d_ctx(argon2_context *context);
/**
* Argon2i: Version of Argon2 that picks memory blocks
* independent on the password and salt. Good for side-channels,
* but worse w.r.t. tradeoff attacks if only one pass is used.
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2i_ctx(argon2_context *context);
/**
* Argon2id: Version of Argon2 where the first half-pass over memory is
* password-independent, the rest are password-dependent (on the password and
* salt). OK against side channels (they reduce to 1/2-pass Argon2i), and
* better with w.r.t. tradeoff attacks (similar to Argon2d).
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2id_ctx(argon2_context *context);
/**
* Verify if a given password is correct for Argon2d hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2d_verify_ctx(argon2_context *context, const char *hash);
/**
* Verify if a given password is correct for Argon2i hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2i_verify_ctx(argon2_context *context, const char *hash);
/**
* Verify if a given password is correct for Argon2id hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2id_verify_ctx(argon2_context *context,
const char *hash);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_verify_ctx(argon2_context *context, const char *hash,
argon2_type type);
/**
* Get the associated error message for given error code
* @return The error message associated with the given error code
*/
ARGON2_PUBLIC const char *argon2_error_message(int error_code);
/**
* Returns the encoded hash length for the given input parameters
* @param t_cost Number of iterations
* @param m_cost Memory usage in kibibytes
* @param parallelism Number of threads; used to compute lanes
* @param saltlen Salt size in bytes
* @param hashlen Hash size in bytes
* @param type The argon2_type that we want the encoded length for
* @return The encoded hash length in bytes
*/
ARGON2_PUBLIC size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost,
uint32_t parallelism, uint32_t saltlen,
uint32_t hashlen, argon2_type type);
#if defined(__cplusplus)
}
#endif
#endif

View File

@@ -0,0 +1,156 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef PORTABLE_BLAKE2_IMPL_H
#define PORTABLE_BLAKE2_IMPL_H
#include <stdint.h>
#include <string.h>
#ifdef _WIN32
#define BLAKE2_INLINE __inline
#elif defined(__GNUC__) || defined(__clang__)
#define BLAKE2_INLINE __inline__
#else
#define BLAKE2_INLINE
#endif
/* Argon2 Team - Begin Code */
/*
Not an exhaustive list, but should cover the majority of modern platforms
Additionally, the code will always be correct---this is only a performance
tweak.
*/
#if (defined(__BYTE_ORDER__) && \
(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \
defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || defined(__MIPSEL__) || \
defined(__AARCH64EL__) || defined(__amd64__) || defined(__i386__) || \
defined(_M_IX86) || defined(_M_X64) || defined(_M_AMD64) || \
defined(_M_ARM)
#define NATIVE_LITTLE_ENDIAN
#endif
/* Argon2 Team - End Code */
static BLAKE2_INLINE uint32_t load32(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint32_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint32_t w = *p++;
w |= (uint32_t)(*p++) << 8;
w |= (uint32_t)(*p++) << 16;
w |= (uint32_t)(*p++) << 24;
return w;
#endif
}
static BLAKE2_INLINE uint64_t load64(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint64_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
w |= (uint64_t)(*p++) << 48;
w |= (uint64_t)(*p++) << 56;
return w;
#endif
}
static BLAKE2_INLINE void store32(void *dst, uint32_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE void store64(void *dst, uint64_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE uint64_t load48(const void *src) {
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
return w;
}
static BLAKE2_INLINE void store48(void *dst, uint64_t w) {
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
}
static BLAKE2_INLINE uint32_t rotr32(const uint32_t w, const unsigned c) {
return (w >> c) | (w << (32 - c));
}
static BLAKE2_INLINE uint64_t rotr64(const uint64_t w, const unsigned c) {
return (w >> c) | (w << (64 - c));
}
void clear_internal_memory(void *v, size_t n);
#endif

View File

@@ -0,0 +1,89 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef PORTABLE_BLAKE2_H
#define PORTABLE_BLAKE2_H
#include <argon2.h>
#if defined(__cplusplus)
extern "C" {
#endif
enum blake2b_constant {
BLAKE2B_BLOCKBYTES = 128,
BLAKE2B_OUTBYTES = 64,
BLAKE2B_KEYBYTES = 64,
BLAKE2B_SALTBYTES = 16,
BLAKE2B_PERSONALBYTES = 16
};
#pragma pack(push, 1)
typedef struct __blake2b_param {
uint8_t digest_length; /* 1 */
uint8_t key_length; /* 2 */
uint8_t fanout; /* 3 */
uint8_t depth; /* 4 */
uint32_t leaf_length; /* 8 */
uint64_t node_offset; /* 16 */
uint8_t node_depth; /* 17 */
uint8_t inner_length; /* 18 */
uint8_t reserved[14]; /* 32 */
uint8_t salt[BLAKE2B_SALTBYTES]; /* 48 */
uint8_t personal[BLAKE2B_PERSONALBYTES]; /* 64 */
} blake2b_param;
#pragma pack(pop)
typedef struct __blake2b_state {
uint64_t h[8];
uint64_t t[2];
uint64_t f[2];
uint8_t buf[BLAKE2B_BLOCKBYTES];
unsigned buflen;
unsigned outlen;
uint8_t last_node;
} blake2b_state;
/* Ensure param structs have not been wrongly padded */
/* Poor man's static_assert */
enum {
blake2_size_check_0 = 1 / !!(CHAR_BIT == 8),
blake2_size_check_2 =
1 / !!(sizeof(blake2b_param) == sizeof(uint64_t) * CHAR_BIT)
};
/* Streaming API */
ARGON2_LOCAL int blake2b_init(blake2b_state *S, size_t outlen);
ARGON2_LOCAL int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
size_t keylen);
ARGON2_LOCAL int blake2b_init_param(blake2b_state *S, const blake2b_param *P);
ARGON2_LOCAL int blake2b_update(blake2b_state *S, const void *in, size_t inlen);
ARGON2_LOCAL int blake2b_final(blake2b_state *S, void *out, size_t outlen);
/* Simple API */
ARGON2_LOCAL int blake2b(void *out, size_t outlen, const void *in, size_t inlen,
const void *key, size_t keylen);
/* Argon2 Team - Begin Code */
ARGON2_LOCAL int blake2b_long(void *out, size_t outlen, const void *in, size_t inlen);
/* Argon2 Team - End Code */
#if defined(__cplusplus)
}
#endif
#endif

390
lib/argon2/blake2/blake2b.c Normal file
View File

@@ -0,0 +1,390 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "blake2.h"
#include "blake2-impl.h"
static const uint64_t blake2b_IV[8] = {
UINT64_C(0x6a09e667f3bcc908), UINT64_C(0xbb67ae8584caa73b),
UINT64_C(0x3c6ef372fe94f82b), UINT64_C(0xa54ff53a5f1d36f1),
UINT64_C(0x510e527fade682d1), UINT64_C(0x9b05688c2b3e6c1f),
UINT64_C(0x1f83d9abfb41bd6b), UINT64_C(0x5be0cd19137e2179)};
static const unsigned int blake2b_sigma[12][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
};
static BLAKE2_INLINE void blake2b_set_lastnode(blake2b_state *S) {
S->f[1] = (uint64_t)-1;
}
static BLAKE2_INLINE void blake2b_set_lastblock(blake2b_state *S) {
if (S->last_node) {
blake2b_set_lastnode(S);
}
S->f[0] = (uint64_t)-1;
}
static BLAKE2_INLINE void blake2b_increment_counter(blake2b_state *S,
uint64_t inc) {
S->t[0] += inc;
S->t[1] += (S->t[0] < inc);
}
static BLAKE2_INLINE void blake2b_invalidate_state(blake2b_state *S) {
clear_internal_memory(S, sizeof(*S)); /* wipe */
blake2b_set_lastblock(S); /* invalidate for further use */
}
static BLAKE2_INLINE void blake2b_init0(blake2b_state *S) {
memset(S, 0, sizeof(*S));
memcpy(S->h, blake2b_IV, sizeof(S->h));
}
int blake2b_init_param(blake2b_state *S, const blake2b_param *P) {
const unsigned char *p = (const unsigned char *)P;
unsigned int i;
if (NULL == P || NULL == S) {
return -1;
}
blake2b_init0(S);
/* IV XOR Parameter Block */
for (i = 0; i < 8; ++i) {
S->h[i] ^= load64(&p[i * sizeof(S->h[i])]);
}
S->outlen = P->digest_length;
return 0;
}
/* Sequential blake2b initialization */
int blake2b_init(blake2b_state *S, size_t outlen) {
blake2b_param P;
if (S == NULL) {
return -1;
}
if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) {
blake2b_invalidate_state(S);
return -1;
}
/* Setup Parameter Block for unkeyed BLAKE2 */
P.digest_length = (uint8_t)outlen;
P.key_length = 0;
P.fanout = 1;
P.depth = 1;
P.leaf_length = 0;
P.node_offset = 0;
P.node_depth = 0;
P.inner_length = 0;
memset(P.reserved, 0, sizeof(P.reserved));
memset(P.salt, 0, sizeof(P.salt));
memset(P.personal, 0, sizeof(P.personal));
return blake2b_init_param(S, &P);
}
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
size_t keylen) {
blake2b_param P;
if (S == NULL) {
return -1;
}
if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) {
blake2b_invalidate_state(S);
return -1;
}
if ((key == 0) || (keylen == 0) || (keylen > BLAKE2B_KEYBYTES)) {
blake2b_invalidate_state(S);
return -1;
}
/* Setup Parameter Block for keyed BLAKE2 */
P.digest_length = (uint8_t)outlen;
P.key_length = (uint8_t)keylen;
P.fanout = 1;
P.depth = 1;
P.leaf_length = 0;
P.node_offset = 0;
P.node_depth = 0;
P.inner_length = 0;
memset(P.reserved, 0, sizeof(P.reserved));
memset(P.salt, 0, sizeof(P.salt));
memset(P.personal, 0, sizeof(P.personal));
if (blake2b_init_param(S, &P) < 0) {
blake2b_invalidate_state(S);
return -1;
}
{
uint8_t block[BLAKE2B_BLOCKBYTES];
memset(block, 0, BLAKE2B_BLOCKBYTES);
memcpy(block, key, keylen);
blake2b_update(S, block, BLAKE2B_BLOCKBYTES);
/* Burn the key from stack */
clear_internal_memory(block, BLAKE2B_BLOCKBYTES);
}
return 0;
}
static void blake2b_compress(blake2b_state *S, const uint8_t *block) {
uint64_t m[16];
uint64_t v[16];
unsigned int i, r;
for (i = 0; i < 16; ++i) {
m[i] = load64(block + i * sizeof(m[i]));
}
for (i = 0; i < 8; ++i) {
v[i] = S->h[i];
}
v[8] = blake2b_IV[0];
v[9] = blake2b_IV[1];
v[10] = blake2b_IV[2];
v[11] = blake2b_IV[3];
v[12] = blake2b_IV[4] ^ S->t[0];
v[13] = blake2b_IV[5] ^ S->t[1];
v[14] = blake2b_IV[6] ^ S->f[0];
v[15] = blake2b_IV[7] ^ S->f[1];
#define G(r, i, a, b, c, d) \
do { \
a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define ROUND(r) \
do { \
G(r, 0, v[0], v[4], v[8], v[12]); \
G(r, 1, v[1], v[5], v[9], v[13]); \
G(r, 2, v[2], v[6], v[10], v[14]); \
G(r, 3, v[3], v[7], v[11], v[15]); \
G(r, 4, v[0], v[5], v[10], v[15]); \
G(r, 5, v[1], v[6], v[11], v[12]); \
G(r, 6, v[2], v[7], v[8], v[13]); \
G(r, 7, v[3], v[4], v[9], v[14]); \
} while ((void)0, 0)
for (r = 0; r < 12; ++r) {
ROUND(r);
}
for (i = 0; i < 8; ++i) {
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
}
#undef G
#undef ROUND
}
int blake2b_update(blake2b_state *S, const void *in, size_t inlen) {
const uint8_t *pin = (const uint8_t *)in;
if (inlen == 0) {
return 0;
}
/* Sanity check */
if (S == NULL || in == NULL) {
return -1;
}
/* Is this a reused state? */
if (S->f[0] != 0) {
return -1;
}
if (S->buflen + inlen > BLAKE2B_BLOCKBYTES) {
/* Complete current block */
size_t left = S->buflen;
size_t fill = BLAKE2B_BLOCKBYTES - left;
memcpy(&S->buf[left], pin, fill);
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, S->buf);
S->buflen = 0;
inlen -= fill;
pin += fill;
/* Avoid buffer copies when possible */
while (inlen > BLAKE2B_BLOCKBYTES) {
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, pin);
inlen -= BLAKE2B_BLOCKBYTES;
pin += BLAKE2B_BLOCKBYTES;
}
}
memcpy(&S->buf[S->buflen], pin, inlen);
S->buflen += (unsigned int)inlen;
return 0;
}
int blake2b_final(blake2b_state *S, void *out, size_t outlen) {
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
unsigned int i;
/* Sanity checks */
if (S == NULL || out == NULL || outlen < S->outlen) {
return -1;
}
/* Is this a reused state? */
if (S->f[0] != 0) {
return -1;
}
blake2b_increment_counter(S, S->buflen);
blake2b_set_lastblock(S);
memset(&S->buf[S->buflen], 0, BLAKE2B_BLOCKBYTES - S->buflen); /* Padding */
blake2b_compress(S, S->buf);
for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */
store64(buffer + sizeof(S->h[i]) * i, S->h[i]);
}
memcpy(out, buffer, S->outlen);
clear_internal_memory(buffer, sizeof(buffer));
clear_internal_memory(S->buf, sizeof(S->buf));
clear_internal_memory(S->h, sizeof(S->h));
return 0;
}
int blake2b(void *out, size_t outlen, const void *in, size_t inlen,
const void *key, size_t keylen) {
blake2b_state S;
int ret = -1;
/* Verify parameters */
if (NULL == in && inlen > 0) {
goto fail;
}
if (NULL == out || outlen == 0 || outlen > BLAKE2B_OUTBYTES) {
goto fail;
}
if ((NULL == key && keylen > 0) || keylen > BLAKE2B_KEYBYTES) {
goto fail;
}
if (keylen > 0) {
if (blake2b_init_key(&S, outlen, key, keylen) < 0) {
goto fail;
}
} else {
if (blake2b_init(&S, outlen) < 0) {
goto fail;
}
}
if (blake2b_update(&S, in, inlen) < 0) {
goto fail;
}
ret = blake2b_final(&S, out, outlen);
fail:
clear_internal_memory(&S, sizeof(S));
return ret;
}
/* Argon2 Team - Begin Code */
int blake2b_long(void *pout, size_t outlen, const void *in, size_t inlen) {
uint8_t *out = (uint8_t *)pout;
blake2b_state blake_state;
uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
int ret = -1;
if (outlen > UINT32_MAX) {
goto fail;
}
/* Ensure little-endian byte order! */
store32(outlen_bytes, (uint32_t)outlen);
#define TRY(statement) \
do { \
ret = statement; \
if (ret < 0) { \
goto fail; \
} \
} while ((void)0, 0)
if (outlen <= BLAKE2B_OUTBYTES) {
TRY(blake2b_init(&blake_state, outlen));
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
TRY(blake2b_update(&blake_state, in, inlen));
TRY(blake2b_final(&blake_state, out, outlen));
} else {
uint32_t toproduce;
uint8_t out_buffer[BLAKE2B_OUTBYTES];
uint8_t in_buffer[BLAKE2B_OUTBYTES];
TRY(blake2b_init(&blake_state, BLAKE2B_OUTBYTES));
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
TRY(blake2b_update(&blake_state, in, inlen));
TRY(blake2b_final(&blake_state, out_buffer, BLAKE2B_OUTBYTES));
memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
toproduce = (uint32_t)outlen - BLAKE2B_OUTBYTES / 2;
while (toproduce > BLAKE2B_OUTBYTES) {
memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
TRY(blake2b(out_buffer, BLAKE2B_OUTBYTES, in_buffer,
BLAKE2B_OUTBYTES, NULL, 0));
memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
toproduce -= BLAKE2B_OUTBYTES / 2;
}
memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
TRY(blake2b(out_buffer, toproduce, in_buffer, BLAKE2B_OUTBYTES, NULL,
0));
memcpy(out, out_buffer, toproduce);
}
fail:
clear_internal_memory(&blake_state, sizeof(blake_state));
return ret;
#undef TRY
}
/* Argon2 Team - End Code */

View File

@@ -0,0 +1,56 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef BLAKE_ROUND_MKA_H
#define BLAKE_ROUND_MKA_H
#include "blake2.h"
#include "blake2-impl.h"
/* designed by the Lyra PHC team */
static BLAKE2_INLINE uint64_t fBlaMka(uint64_t x, uint64_t y) {
const uint64_t m = UINT64_C(0xFFFFFFFF);
const uint64_t xy = (x & m) * (y & m);
return x + y + 2 * xy;
}
#define G(a, b, c, d) \
do { \
a = fBlaMka(a, b); \
d = rotr64(d ^ a, 32); \
c = fBlaMka(c, d); \
b = rotr64(b ^ c, 24); \
a = fBlaMka(a, b); \
d = rotr64(d ^ a, 16); \
c = fBlaMka(c, d); \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define BLAKE2_ROUND_NOMSG(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, \
v12, v13, v14, v15) \
do { \
G(v0, v4, v8, v12); \
G(v1, v5, v9, v13); \
G(v2, v6, v10, v14); \
G(v3, v7, v11, v15); \
G(v0, v5, v10, v15); \
G(v1, v6, v11, v12); \
G(v2, v7, v8, v13); \
G(v3, v4, v9, v14); \
} while ((void)0, 0)
#endif

648
lib/argon2/core.c Normal file
View File

@@ -0,0 +1,648 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
/*For memory wiping*/
#ifdef _WIN32
#include <windows.h>
#include <winbase.h> /* For SecureZeroMemory */
#endif
#if defined __STDC_LIB_EXT1__
#define __STDC_WANT_LIB_EXT1__ 1
#endif
#define VC_GE_2005(version) (version >= 1400)
/* for explicit_bzero() on glibc */
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "core.h"
#include "thread.h"
#include "blake2/blake2.h"
#include "blake2/blake2-impl.h"
#ifdef GENKAT
#include "genkat.h"
#endif
#if defined(__clang__)
#if __has_attribute(optnone)
#define NOT_OPTIMIZED __attribute__((optnone))
#endif
#elif defined(__GNUC__)
#define GCC_VERSION \
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if GCC_VERSION >= 40400
#define NOT_OPTIMIZED __attribute__((optimize("O0")))
#endif
#endif
#ifndef NOT_OPTIMIZED
#define NOT_OPTIMIZED
#endif
/***************Instance and Position constructors**********/
void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
void copy_block(block *dst, const block *src) {
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
}
void xor_block(block *dst, const block *src) {
int i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
dst->v[i] ^= src->v[i];
}
}
static void load_block(block *dst, const void *input) {
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
}
}
static void store_block(void *output, const block *src) {
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
}
}
/***************Memory functions*****************/
int allocate_memory(const argon2_context *context, uint8_t **memory,
size_t num, size_t size) {
size_t memory_size = num*size;
if (memory == NULL) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
/* 1. Check for multiplication overflow */
if (size != 0 && memory_size / size != num) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
/* 2. Try to allocate with appropriate allocator */
if (context->allocate_cbk) {
(context->allocate_cbk)(memory, memory_size);
} else {
*memory = malloc(memory_size);
}
if (*memory == NULL) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
return ARGON2_OK;
}
void free_memory(const argon2_context *context, uint8_t *memory,
size_t num, size_t size) {
size_t memory_size = num*size;
clear_internal_memory(memory, memory_size);
if (context->free_cbk) {
(context->free_cbk)(memory, memory_size);
} else {
free(memory);
}
}
#if defined(__OpenBSD__)
#define HAVE_EXPLICIT_BZERO 1
#elif defined(__GLIBC__) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2,25)
#define HAVE_EXPLICIT_BZERO 1
#endif
#endif
void NOT_OPTIMIZED secure_wipe_memory(void *v, size_t n) {
#if defined(_MSC_VER) && VC_GE_2005(_MSC_VER) || defined(__MINGW32__)
SecureZeroMemory(v, n);
#elif defined memset_s
memset_s(v, n, 0, n);
#elif defined(HAVE_EXPLICIT_BZERO)
explicit_bzero(v, n);
#else
static void *(*const volatile memset_sec)(void *, int, size_t) = &memset;
memset_sec(v, 0, n);
#endif
}
/* Memory clear flag defaults to true. */
int FLAG_clear_internal_memory = 1;
void clear_internal_memory(void *v, size_t n) {
if (FLAG_clear_internal_memory && v) {
secure_wipe_memory(v, n);
}
}
void finalize(const argon2_context *context, argon2_instance_t *instance) {
if (context != NULL && instance != NULL) {
block blockhash;
uint32_t l;
copy_block(&blockhash, instance->memory + instance->lane_length - 1);
/* XOR the last blocks */
for (l = 1; l < instance->lanes; ++l) {
uint32_t last_block_in_lane =
l * instance->lane_length + (instance->lane_length - 1);
xor_block(&blockhash, instance->memory + last_block_in_lane);
}
/* Hash the result */
{
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
store_block(blockhash_bytes, &blockhash);
blake2b_long(context->out, context->outlen, blockhash_bytes,
ARGON2_BLOCK_SIZE);
/* clear blockhash and blockhash_bytes */
clear_internal_memory(blockhash.v, ARGON2_BLOCK_SIZE);
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
}
#ifdef GENKAT
print_tag(context->out, context->outlen);
#endif
free_memory(context, (uint8_t *)instance->memory,
instance->memory_blocks, sizeof(block));
}
}
uint32_t index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane) {
/*
* Pass 0:
* This lane : all already finished segments plus already constructed
* blocks in this segment
* Other lanes : all already finished segments
* Pass 1+:
* This lane : (SYNC_POINTS - 1) last segments plus already constructed
* blocks in this segment
* Other lanes : (SYNC_POINTS - 1) last segments
*/
uint32_t reference_area_size;
uint64_t relative_position;
uint32_t start_position, absolute_position;
if (0 == position->pass) {
/* First pass */
if (0 == position->slice) {
/* First slice */
reference_area_size =
position->index - 1; /* all but the previous */
} else {
if (same_lane) {
/* The same lane => add current segment */
reference_area_size =
position->slice * instance->segment_length +
position->index - 1;
} else {
reference_area_size =
position->slice * instance->segment_length +
((position->index == 0) ? (-1) : 0);
}
}
} else {
/* Second pass */
if (same_lane) {
reference_area_size = instance->lane_length -
instance->segment_length + position->index -
1;
} else {
reference_area_size = instance->lane_length -
instance->segment_length +
((position->index == 0) ? (-1) : 0);
}
}
/* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce
* relative position */
relative_position = pseudo_rand;
relative_position = relative_position * relative_position >> 32;
relative_position = reference_area_size - 1 -
(reference_area_size * relative_position >> 32);
/* 1.2.5 Computing starting position */
start_position = 0;
if (0 != position->pass) {
start_position = (position->slice == ARGON2_SYNC_POINTS - 1)
? 0
: (position->slice + 1) * instance->segment_length;
}
/* 1.2.6. Computing absolute position */
absolute_position = (start_position + relative_position) %
instance->lane_length; /* absolute position */
return absolute_position;
}
/* Single-threaded version for p=1 case */
static int fill_memory_blocks_st(argon2_instance_t *instance) {
uint32_t r, s, l;
for (r = 0; r < instance->passes; ++r) {
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
for (l = 0; l < instance->lanes; ++l) {
argon2_position_t position = {r, l, (uint8_t)s, 0};
fill_segment(instance, position);
}
}
#ifdef GENKAT
internal_kat(instance, r); /* Print all memory blocks */
#endif
}
return ARGON2_OK;
}
#if !defined(ARGON2_NO_THREADS)
#ifdef _WIN32
static unsigned __stdcall fill_segment_thr(void *thread_data)
#else
static void *fill_segment_thr(void *thread_data)
#endif
{
argon2_thread_data *my_data = thread_data;
fill_segment(my_data->instance_ptr, my_data->pos);
argon2_thread_exit();
return 0;
}
/* Multi-threaded version for p > 1 case */
static int fill_memory_blocks_mt(argon2_instance_t *instance) {
uint32_t r, s;
argon2_thread_handle_t *thread = NULL;
argon2_thread_data *thr_data = NULL;
int rc = ARGON2_OK;
/* 1. Allocating space for threads */
thread = calloc(instance->lanes, sizeof(argon2_thread_handle_t));
if (thread == NULL) {
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
thr_data = calloc(instance->lanes, sizeof(argon2_thread_data));
if (thr_data == NULL) {
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
for (r = 0; r < instance->passes; ++r) {
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
uint32_t l, ll;
/* 2. Calling threads */
for (l = 0; l < instance->lanes; ++l) {
argon2_position_t position;
/* 2.1 Join a thread if limit is exceeded */
if (l >= instance->threads) {
if (argon2_thread_join(thread[l - instance->threads])) {
rc = ARGON2_THREAD_FAIL;
goto fail;
}
}
/* 2.2 Create thread */
position.pass = r;
position.lane = l;
position.slice = (uint8_t)s;
position.index = 0;
thr_data[l].instance_ptr =
instance; /* preparing the thread input */
memcpy(&(thr_data[l].pos), &position,
sizeof(argon2_position_t));
if (argon2_thread_create(&thread[l], &fill_segment_thr,
(void *)&thr_data[l])) {
/* Wait for already running threads */
for (ll = 0; ll < l; ++ll)
argon2_thread_join(thread[ll]);
rc = ARGON2_THREAD_FAIL;
goto fail;
}
/* fill_segment(instance, position); */
/*Non-thread equivalent of the lines above */
}
/* 3. Joining remaining threads */
for (l = instance->lanes - instance->threads; l < instance->lanes;
++l) {
if (argon2_thread_join(thread[l])) {
rc = ARGON2_THREAD_FAIL;
goto fail;
}
}
}
#ifdef GENKAT
internal_kat(instance, r); /* Print all memory blocks */
#endif
}
fail:
if (thread != NULL) {
free(thread);
}
if (thr_data != NULL) {
free(thr_data);
}
return rc;
}
#endif /* ARGON2_NO_THREADS */
int fill_memory_blocks(argon2_instance_t *instance) {
if (instance == NULL || instance->lanes == 0) {
return ARGON2_INCORRECT_PARAMETER;
}
#if defined(ARGON2_NO_THREADS)
return fill_memory_blocks_st(instance);
#else
return instance->threads == 1 ?
fill_memory_blocks_st(instance) : fill_memory_blocks_mt(instance);
#endif
}
int validate_inputs(const argon2_context *context) {
if (NULL == context) {
return ARGON2_INCORRECT_PARAMETER;
}
if (NULL == context->out) {
return ARGON2_OUTPUT_PTR_NULL;
}
/* Validate output length */
if (ARGON2_MIN_OUTLEN > context->outlen) {
return ARGON2_OUTPUT_TOO_SHORT;
}
if (ARGON2_MAX_OUTLEN < context->outlen) {
return ARGON2_OUTPUT_TOO_LONG;
}
/* Validate password (required param) */
if (NULL == context->pwd) {
if (0 != context->pwdlen) {
return ARGON2_PWD_PTR_MISMATCH;
}
}
if (ARGON2_MIN_PWD_LENGTH > context->pwdlen) {
return ARGON2_PWD_TOO_SHORT;
}
if (ARGON2_MAX_PWD_LENGTH < context->pwdlen) {
return ARGON2_PWD_TOO_LONG;
}
/* Validate salt (required param) */
if (NULL == context->salt) {
if (0 != context->saltlen) {
return ARGON2_SALT_PTR_MISMATCH;
}
}
if (ARGON2_MIN_SALT_LENGTH > context->saltlen) {
return ARGON2_SALT_TOO_SHORT;
}
if (ARGON2_MAX_SALT_LENGTH < context->saltlen) {
return ARGON2_SALT_TOO_LONG;
}
/* Validate secret (optional param) */
if (NULL == context->secret) {
if (0 != context->secretlen) {
return ARGON2_SECRET_PTR_MISMATCH;
}
} else {
if (ARGON2_MIN_SECRET > context->secretlen) {
return ARGON2_SECRET_TOO_SHORT;
}
if (ARGON2_MAX_SECRET < context->secretlen) {
return ARGON2_SECRET_TOO_LONG;
}
}
/* Validate associated data (optional param) */
if (NULL == context->ad) {
if (0 != context->adlen) {
return ARGON2_AD_PTR_MISMATCH;
}
} else {
if (ARGON2_MIN_AD_LENGTH > context->adlen) {
return ARGON2_AD_TOO_SHORT;
}
if (ARGON2_MAX_AD_LENGTH < context->adlen) {
return ARGON2_AD_TOO_LONG;
}
}
/* Validate memory cost */
if (ARGON2_MIN_MEMORY > context->m_cost) {
return ARGON2_MEMORY_TOO_LITTLE;
}
if (ARGON2_MAX_MEMORY < context->m_cost) {
return ARGON2_MEMORY_TOO_MUCH;
}
if (context->m_cost < 8 * context->lanes) {
return ARGON2_MEMORY_TOO_LITTLE;
}
/* Validate time cost */
if (ARGON2_MIN_TIME > context->t_cost) {
return ARGON2_TIME_TOO_SMALL;
}
if (ARGON2_MAX_TIME < context->t_cost) {
return ARGON2_TIME_TOO_LARGE;
}
/* Validate lanes */
if (ARGON2_MIN_LANES > context->lanes) {
return ARGON2_LANES_TOO_FEW;
}
if (ARGON2_MAX_LANES < context->lanes) {
return ARGON2_LANES_TOO_MANY;
}
/* Validate threads */
if (ARGON2_MIN_THREADS > context->threads) {
return ARGON2_THREADS_TOO_FEW;
}
if (ARGON2_MAX_THREADS < context->threads) {
return ARGON2_THREADS_TOO_MANY;
}
if (NULL != context->allocate_cbk && NULL == context->free_cbk) {
return ARGON2_FREE_MEMORY_CBK_NULL;
}
if (NULL == context->allocate_cbk && NULL != context->free_cbk) {
return ARGON2_ALLOCATE_MEMORY_CBK_NULL;
}
return ARGON2_OK;
}
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
uint32_t l;
/* Make the first and second block in each lane as G(H0||0||i) or
G(H0||1||i) */
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
for (l = 0; l < instance->lanes; ++l) {
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
ARGON2_PREHASH_SEED_LENGTH);
load_block(&instance->memory[l * instance->lane_length + 0],
blockhash_bytes);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
ARGON2_PREHASH_SEED_LENGTH);
load_block(&instance->memory[l * instance->lane_length + 1],
blockhash_bytes);
}
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
}
void initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type) {
blake2b_state BlakeHash;
uint8_t value[sizeof(uint32_t)];
if (NULL == context || NULL == blockhash) {
return;
}
blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH);
store32(&value, context->lanes);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->outlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->m_cost);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->t_cost);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->version);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, (uint32_t)type);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->pwdlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->pwd != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->pwd,
context->pwdlen);
if (context->flags & ARGON2_FLAG_CLEAR_PASSWORD) {
secure_wipe_memory(context->pwd, context->pwdlen);
context->pwdlen = 0;
}
}
store32(&value, context->saltlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->salt != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->salt,
context->saltlen);
}
store32(&value, context->secretlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->secret != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->secret,
context->secretlen);
if (context->flags & ARGON2_FLAG_CLEAR_SECRET) {
secure_wipe_memory(context->secret, context->secretlen);
context->secretlen = 0;
}
}
store32(&value, context->adlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->ad != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->ad,
context->adlen);
}
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
}
int initialize(argon2_instance_t *instance, argon2_context *context) {
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
int result = ARGON2_OK;
if (instance == NULL || context == NULL)
return ARGON2_INCORRECT_PARAMETER;
instance->context_ptr = context;
/* 1. Memory allocation */
result = allocate_memory(context, (uint8_t **)&(instance->memory),
instance->memory_blocks, sizeof(block));
if (result != ARGON2_OK) {
return result;
}
/* 2. Initial hashing */
/* H_0 + 8 extra bytes to produce the first blocks */
/* uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; */
/* Hashing all inputs */
initial_hash(blockhash, context, instance->type);
/* Zeroing 8 extra bytes */
clear_internal_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
ARGON2_PREHASH_SEED_LENGTH -
ARGON2_PREHASH_DIGEST_LENGTH);
#ifdef GENKAT
initial_kat(blockhash, context, instance->type);
#endif
/* 3. Creating first blocks, we always have at least two blocks in a slice
*/
fill_first_blocks(blockhash, instance);
/* Clearing the hash */
clear_internal_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
return ARGON2_OK;
}

228
lib/argon2/core.h Normal file
View File

@@ -0,0 +1,228 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef ARGON2_CORE_H
#define ARGON2_CORE_H
#include "argon2.h"
#define CONST_CAST(x) (x)(uintptr_t)
/**********************Argon2 internal constants*******************************/
enum argon2_core_constants {
/* Memory block size in bytes */
ARGON2_BLOCK_SIZE = 1024,
ARGON2_QWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 8,
ARGON2_OWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 16,
ARGON2_HWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 32,
ARGON2_512BIT_WORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 64,
/* Number of pseudo-random values generated by one call to Blake in Argon2i
to
generate reference block positions */
ARGON2_ADDRESSES_IN_BLOCK = 128,
/* Pre-hashing digest length and its extension*/
ARGON2_PREHASH_DIGEST_LENGTH = 64,
ARGON2_PREHASH_SEED_LENGTH = 72
};
/*************************Argon2 internal data types***********************/
/*
* Structure for the (1KB) memory block implemented as 128 64-bit words.
* Memory blocks can be copied, XORed. Internal words can be accessed by [] (no
* bounds checking).
*/
typedef struct block_ { uint64_t v[ARGON2_QWORDS_IN_BLOCK]; } block;
/*****************Functions that work with the block******************/
/* Initialize each byte of the block with @in */
void init_block_value(block *b, uint8_t in);
/* Copy block @src to block @dst */
void copy_block(block *dst, const block *src);
/* XOR @src onto @dst bytewise */
void xor_block(block *dst, const block *src);
/*
* Argon2 instance: memory pointer, number of passes, amount of memory, type,
* and derived values.
* Used to evaluate the number and location of blocks to construct in each
* thread
*/
typedef struct Argon2_instance_t {
block *memory; /* Memory pointer */
uint32_t version;
uint32_t passes; /* Number of passes */
uint32_t memory_blocks; /* Number of blocks in memory */
uint32_t segment_length;
uint32_t lane_length;
uint32_t lanes;
uint32_t threads;
argon2_type type;
int print_internals; /* whether to print the memory blocks */
argon2_context *context_ptr; /* points back to original context */
} argon2_instance_t;
/*
* Argon2 position: where we construct the block right now. Used to distribute
* work between threads.
*/
typedef struct Argon2_position_t {
uint32_t pass;
uint32_t lane;
uint8_t slice;
uint32_t index;
} argon2_position_t;
/*Struct that holds the inputs for thread handling FillSegment*/
typedef struct Argon2_thread_data {
argon2_instance_t *instance_ptr;
argon2_position_t pos;
} argon2_thread_data;
/*************************Argon2 core functions********************************/
/* Allocates memory to the given pointer, uses the appropriate allocator as
* specified in the context. Total allocated memory is num*size.
* @param context argon2_context which specifies the allocator
* @param memory pointer to the pointer to the memory
* @param size the size in bytes for each element to be allocated
* @param num the number of elements to be allocated
* @return ARGON2_OK if @memory is a valid pointer and memory is allocated
*/
int allocate_memory(const argon2_context *context, uint8_t **memory,
size_t num, size_t size);
/*
* Frees memory at the given pointer, uses the appropriate deallocator as
* specified in the context. Also cleans the memory using clear_internal_memory.
* @param context argon2_context which specifies the deallocator
* @param memory pointer to buffer to be freed
* @param size the size in bytes for each element to be deallocated
* @param num the number of elements to be deallocated
*/
void free_memory(const argon2_context *context, uint8_t *memory,
size_t num, size_t size);
/* Function that securely cleans the memory. This ignores any flags set
* regarding clearing memory. Usually one just calls clear_internal_memory.
* @param mem Pointer to the memory
* @param s Memory size in bytes
*/
void secure_wipe_memory(void *v, size_t n);
/* Function that securely clears the memory if FLAG_clear_internal_memory is
* set. If the flag isn't set, this function does nothing.
* @param mem Pointer to the memory
* @param s Memory size in bytes
*/
void clear_internal_memory(void *v, size_t n);
/*
* Computes absolute position of reference block in the lane following a skewed
* distribution and using a pseudo-random value as input
* @param instance Pointer to the current instance
* @param position Pointer to the current position
* @param pseudo_rand 32-bit pseudo-random value used to determine the position
* @param same_lane Indicates if the block will be taken from the current lane.
* If so we can reference the current segment
* @pre All pointers must be valid
*/
uint32_t index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane);
/*
* Function that validates all inputs against predefined restrictions and return
* an error code
* @param context Pointer to current Argon2 context
* @return ARGON2_OK if everything is all right, otherwise one of error codes
* (all defined in <argon2.h>
*/
int validate_inputs(const argon2_context *context);
/*
* Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH], clears
* password and secret if needed
* @param context Pointer to the Argon2 internal structure containing memory
* pointer, and parameters for time and space requirements.
* @param blockhash Buffer for pre-hashing digest
* @param type Argon2 type
* @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes
* allocated
*/
void initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type);
/*
* Function creates first 2 blocks per lane
* @param instance Pointer to the current instance
* @param blockhash Pointer to the pre-hashing digest
* @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values
*/
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
/*
* Function allocates memory, hashes the inputs with Blake, and creates first
* two blocks. Returns the pointer to the main memory with 2 blocks per lane
* initialized
* @param context Pointer to the Argon2 internal structure containing memory
* pointer, and parameters for time and space requirements.
* @param instance Current Argon2 instance
* @return Zero if successful, -1 if memory failed to allocate. @context->state
* will be modified if successful.
*/
int initialize(argon2_instance_t *instance, argon2_context *context);
/*
* XORing the last block of each lane, hashing it, making the tag. Deallocates
* the memory.
* @param context Pointer to current Argon2 context (use only the out parameters
* from it)
* @param instance Pointer to current instance of Argon2
* @pre instance->state must point to necessary amount of memory
* @pre context->out must point to outlen bytes of memory
* @pre if context->free_cbk is not NULL, it should point to a function that
* deallocates memory
*/
void finalize(const argon2_context *context, argon2_instance_t *instance);
/*
* Function that fills the segment using previous segments also from other
* threads
* @param context current context
* @param instance Pointer to the current instance
* @param position Current position
* @pre all block pointers must be valid
*/
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position);
/*
* Function that fills the entire memory t_cost times based on the first two
* blocks in each lane
* @param instance Pointer to the current instance
* @return ARGON2_OK if successful, @context->state
*/
int fill_memory_blocks(argon2_instance_t *instance);
#endif

194
lib/argon2/ref.c Normal file
View File

@@ -0,0 +1,194 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "argon2.h"
#include "core.h"
#include "blake2/blamka-round-ref.h"
#include "blake2/blake2-impl.h"
#include "blake2/blake2.h"
/*
* Function fills a new memory block and optionally XORs the old block over the new one.
* @next_block must be initialized.
* @param prev_block Pointer to the previous block
* @param ref_block Pointer to the reference block
* @param next_block Pointer to the block to be constructed
* @param with_xor Whether to XOR into the new block (1) or just overwrite (0)
* @pre all block pointers must be valid
*/
static void fill_block(const block *prev_block, const block *ref_block,
block *next_block, int with_xor) {
block blockR, block_tmp;
unsigned i;
copy_block(&blockR, ref_block);
xor_block(&blockR, prev_block);
copy_block(&block_tmp, &blockR);
/* Now blockR = ref_block + prev_block and block_tmp = ref_block + prev_block */
if (with_xor) {
/* Saving the next block contents for XOR over: */
xor_block(&block_tmp, next_block);
/* Now blockR = ref_block + prev_block and
block_tmp = ref_block + prev_block + next_block */
}
/* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then
(16,17,..31)... finally (112,113,...127) */
for (i = 0; i < 8; ++i) {
BLAKE2_ROUND_NOMSG(
blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
blockR.v[16 * i + 15]);
}
/* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
(2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
for (i = 0; i < 8; i++) {
BLAKE2_ROUND_NOMSG(
blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
blockR.v[2 * i + 113]);
}
copy_block(next_block, &block_tmp);
xor_block(next_block, &blockR);
}
static void next_addresses(block *address_block, block *input_block,
const block *zero_block) {
input_block->v[6]++;
fill_block(zero_block, input_block, address_block, 0);
fill_block(zero_block, address_block, address_block, 0);
}
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position) {
block *ref_block = NULL, *curr_block = NULL;
block address_block, input_block, zero_block;
uint64_t pseudo_rand, ref_index, ref_lane;
uint32_t prev_offset, curr_offset;
uint32_t starting_index;
uint32_t i;
int data_independent_addressing;
if (instance == NULL) {
return;
}
data_independent_addressing =
(instance->type == Argon2_i) ||
(instance->type == Argon2_id && (position.pass == 0) &&
(position.slice < ARGON2_SYNC_POINTS / 2));
if (data_independent_addressing) {
init_block_value(&zero_block, 0);
init_block_value(&input_block, 0);
input_block.v[0] = position.pass;
input_block.v[1] = position.lane;
input_block.v[2] = position.slice;
input_block.v[3] = instance->memory_blocks;
input_block.v[4] = instance->passes;
input_block.v[5] = instance->type;
}
starting_index = 0;
if ((0 == position.pass) && (0 == position.slice)) {
starting_index = 2; /* we have already generated the first two blocks */
/* Don't forget to generate the first block of addresses: */
if (data_independent_addressing) {
next_addresses(&address_block, &input_block, &zero_block);
}
}
/* Offset of the current block */
curr_offset = position.lane * instance->lane_length +
position.slice * instance->segment_length + starting_index;
if (0 == curr_offset % instance->lane_length) {
/* Last block in this lane */
prev_offset = curr_offset + instance->lane_length - 1;
} else {
/* Previous block */
prev_offset = curr_offset - 1;
}
for (i = starting_index; i < instance->segment_length;
++i, ++curr_offset, ++prev_offset) {
/*1.1 Rotating prev_offset if needed */
if (curr_offset % instance->lane_length == 1) {
prev_offset = curr_offset - 1;
}
/* 1.2 Computing the index of the reference block */
/* 1.2.1 Taking pseudo-random value from the previous block */
if (data_independent_addressing) {
if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
next_addresses(&address_block, &input_block, &zero_block);
}
pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
} else {
pseudo_rand = instance->memory[prev_offset].v[0];
}
/* 1.2.2 Computing the lane of the reference block */
ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
if ((position.pass == 0) && (position.slice == 0)) {
/* Can not reference other lanes yet */
ref_lane = position.lane;
}
/* 1.2.3 Computing the number of possible reference block within the
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
ref_lane == position.lane);
/* 2 Creating a new block */
ref_block =
instance->memory + instance->lane_length * ref_lane + ref_index;
curr_block = instance->memory + curr_offset;
if (ARGON2_VERSION_10 == instance->version) {
/* version 1.2.1 and earlier: overwrite, not XOR */
fill_block(instance->memory + prev_offset, ref_block, curr_block, 0);
} else {
if(0 == position.pass) {
fill_block(instance->memory + prev_offset, ref_block,
curr_block, 0);
} else {
fill_block(instance->memory + prev_offset, ref_block,
curr_block, 1);
}
}
}
}