Files
u-boot/drivers/soc/qcom/smem.c
Caleb Connolly 9f333e1708 soc: qcom: smem: get serial number from socinfo
Implement socinfo support to fetch the serial number if available.

Signed-off-by: Caleb Connolly <caleb.connolly@linaro.org>
Reviewed-by: Simon Glass <sjg@chromium.org>
2025-01-31 06:10:33 -07:00

1105 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015, Sony Mobile Communications AB.
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "smem: " fmt
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/ofnode.h>
#include <linux/bug.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/sizes.h>
#include <soc/qcom/smem.h>
#include <soc/qcom/socinfo.h>
#include <env.h>
/*
* The Qualcomm shared memory system is a allocate only heap structure that
* consists of one of more memory areas that can be accessed by the processors
* in the SoC.
*
* All systems contains a global heap, accessible by all processors in the SoC,
* with a table of contents data structure (@smem_header) at the beginning of
* the main shared memory block.
*
* The global header contains meta data for allocations as well as a fixed list
* of 512 entries (@smem_global_entry) that can be initialized to reference
* parts of the shared memory space.
*
*
* In addition to this global heap a set of "private" heaps can be set up at
* boot time with access restrictions so that only certain processor pairs can
* access the data.
*
* These partitions are referenced from an optional partition table
* (@smem_ptable), that is found 4kB from the end of the main smem region. The
* partition table entries (@smem_ptable_entry) lists the involved processors
* (or hosts) and their location in the main shared memory region.
*
* Each partition starts with a header (@smem_partition_header) that identifies
* the partition and holds properties for the two internal memory regions. The
* two regions are cached and non-cached memory respectively. Each region
* contain a link list of allocation headers (@smem_private_entry) followed by
* their data.
*
* Items in the non-cached region are allocated from the start of the partition
* while items in the cached region are allocated from the end. The free area
* is hence the region between the cached and non-cached offsets. The header of
* cached items comes after the data.
*
* Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
* for the global heap. A new global partition is created from the global heap
* region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
* set by the bootloader.
*
* To synchronize allocations in the shared memory heaps a remote spinlock must
* be held - currently lock number 3 of the sfpb or tcsr is used for this on all
* platforms.
*
*/
/*
* The version member of the smem header contains an array of versions for the
* various software components in the SoC. We verify that the boot loader
* version is a valid version as a sanity check.
*/
#define SMEM_MASTER_SBL_VERSION_INDEX 7
#define SMEM_GLOBAL_HEAP_VERSION 11
#define SMEM_GLOBAL_PART_VERSION 12
/*
* The first 8 items are only to be allocated by the boot loader while
* initializing the heap.
*/
#define SMEM_ITEM_LAST_FIXED 8
/* Highest accepted item number, for both global and private heaps */
#define SMEM_ITEM_COUNT 512
/* Processor/host identifier for the application processor */
#define SMEM_HOST_APPS 0
/* Processor/host identifier for the global partition */
#define SMEM_GLOBAL_HOST 0xfffe
/* Max number of processors/hosts in a system */
#define SMEM_HOST_COUNT 20
/**
* struct smem_proc_comm - proc_comm communication struct (legacy)
* @command: current command to be executed
* @status: status of the currently requested command
* @params: parameters to the command
*/
struct smem_proc_comm {
__le32 command;
__le32 status;
__le32 params[2];
};
/**
* struct smem_global_entry - entry to reference smem items on the heap
* @allocated: boolean to indicate if this entry is used
* @offset: offset to the allocated space
* @size: size of the allocated space, 8 byte aligned
* @aux_base: base address for the memory region used by this unit, or 0 for
* the default region. bits 0,1 are reserved
*/
struct smem_global_entry {
__le32 allocated;
__le32 offset;
__le32 size;
__le32 aux_base; /* bits 1:0 reserved */
};
#define AUX_BASE_MASK 0xfffffffc
/**
* struct smem_header - header found in beginning of primary smem region
* @proc_comm: proc_comm communication interface (legacy)
* @version: array of versions for the various subsystems
* @initialized: boolean to indicate that smem is initialized
* @free_offset: index of the first unallocated byte in smem
* @available: number of bytes available for allocation
* @reserved: reserved field, must be 0
* @toc: array of references to items
*/
struct smem_header {
struct smem_proc_comm proc_comm[4];
__le32 version[32];
__le32 initialized;
__le32 free_offset;
__le32 available;
__le32 reserved;
struct smem_global_entry toc[SMEM_ITEM_COUNT];
};
/**
* struct smem_ptable_entry - one entry in the @smem_ptable list
* @offset: offset, within the main shared memory region, of the partition
* @size: size of the partition
* @flags: flags for the partition (currently unused)
* @host0: first processor/host with access to this partition
* @host1: second processor/host with access to this partition
* @cacheline: alignment for "cached" entries
* @reserved: reserved entries for later use
*/
struct smem_ptable_entry {
__le32 offset;
__le32 size;
__le32 flags;
__le16 host0;
__le16 host1;
__le32 cacheline;
__le32 reserved[7];
};
/**
* struct smem_ptable - partition table for the private partitions
* @magic: magic number, must be SMEM_PTABLE_MAGIC
* @version: version of the partition table
* @num_entries: number of partitions in the table
* @reserved: for now reserved entries
* @entry: list of @smem_ptable_entry for the @num_entries partitions
*/
struct smem_ptable {
u8 magic[4];
__le32 version;
__le32 num_entries;
__le32 reserved[5];
struct smem_ptable_entry entry[];
};
static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
/**
* struct smem_partition_header - header of the partitions
* @magic: magic number, must be SMEM_PART_MAGIC
* @host0: first processor/host with access to this partition
* @host1: second processor/host with access to this partition
* @size: size of the partition
* @offset_free_uncached: offset to the first free byte of uncached memory in
* this partition
* @offset_free_cached: offset to the first free byte of cached memory in this
* partition
* @reserved: for now reserved entries
*/
struct smem_partition_header {
u8 magic[4];
__le16 host0;
__le16 host1;
__le32 size;
__le32 offset_free_uncached;
__le32 offset_free_cached;
__le32 reserved[3];
};
/**
* struct smem_partition - describes smem partition
* @virt_base: starting virtual address of partition
* @phys_base: starting physical address of partition
* @cacheline: alignment for "cached" entries
* @size: size of partition
*/
struct smem_partition {
void __iomem *virt_base;
phys_addr_t phys_base;
size_t cacheline;
size_t size;
};
static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
/**
* struct smem_private_entry - header of each item in the private partition
* @canary: magic number, must be SMEM_PRIVATE_CANARY
* @item: identifying number of the smem item
* @size: size of the data, including padding bytes
* @padding_data: number of bytes of padding of data
* @padding_hdr: number of bytes of padding between the header and the data
* @reserved: for now reserved entry
*/
struct smem_private_entry {
u16 canary; /* bytes are the same so no swapping needed */
__le16 item;
__le32 size; /* includes padding bytes */
__le16 padding_data;
__le16 padding_hdr;
__le32 reserved;
};
#define SMEM_PRIVATE_CANARY 0xa5a5
/**
* struct smem_info - smem region info located after the table of contents
* @magic: magic number, must be SMEM_INFO_MAGIC
* @size: size of the smem region
* @base_addr: base address of the smem region
* @reserved: for now reserved entry
* @num_items: highest accepted item number
*/
struct smem_info {
u8 magic[4];
__le32 size;
__le32 base_addr;
__le32 reserved;
__le16 num_items;
};
static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
/**
* struct smem_region - representation of a chunk of memory used for smem
* @aux_base: identifier of aux_mem base
* @virt_base: virtual base address of memory with this aux_mem identifier
* @size: size of the memory region
*/
struct smem_region {
phys_addr_t aux_base;
void __iomem *virt_base;
size_t size;
};
/**
* struct qcom_smem - device data for the smem device
* @ptable: virtual base of partition table
* @global_partition: describes for global partition when in use
* @partitions: list of partitions of current processor/host
* @item_count: max accepted item number
* @num_regions: number of @regions
* @regions: list of the memory regions defining the shared memory
*/
struct qcom_smem {
u32 item_count;
struct smem_ptable *ptable;
struct smem_partition global_partition;
struct smem_partition partitions[SMEM_HOST_COUNT];
unsigned num_regions;
struct smem_region regions[];
};
static void *
phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
{
void *p = phdr;
return p + le32_to_cpu(phdr->offset_free_uncached);
}
static struct smem_private_entry *
phdr_to_first_cached_entry(struct smem_partition_header *phdr,
size_t cacheline)
{
void *p = phdr;
struct smem_private_entry *e;
return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
}
static void *
phdr_to_last_cached_entry(struct smem_partition_header *phdr)
{
void *p = phdr;
return p + le32_to_cpu(phdr->offset_free_cached);
}
static struct smem_private_entry *
phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
{
void *p = phdr;
return p + sizeof(*phdr);
}
static struct smem_private_entry *
uncached_entry_next(struct smem_private_entry *e)
{
void *p = e;
return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
le32_to_cpu(e->size);
}
static struct smem_private_entry *
cached_entry_next(struct smem_private_entry *e, size_t cacheline)
{
void *p = e;
return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
}
static void *uncached_entry_to_item(struct smem_private_entry *e)
{
void *p = e;
return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
}
static void *cached_entry_to_item(struct smem_private_entry *e)
{
void *p = e;
return p - le32_to_cpu(e->size);
}
/* Pointer to the one and only smem handle */
static struct qcom_smem *__smem __section(".data") = NULL;
/**
* qcom_smem_is_available() - Check if SMEM is available
*
* Return: true if SMEM is available, false otherwise.
*/
bool qcom_smem_is_available(void)
{
return !!__smem;
}
EXPORT_SYMBOL_GPL(qcom_smem_is_available);
static int qcom_smem_alloc_private(struct qcom_smem *smem,
struct smem_partition *part,
unsigned item,
size_t size)
{
struct smem_private_entry *hdr, *end;
struct smem_partition_header *phdr;
size_t alloc_size;
void *cached;
void *p_end;
phdr = (struct smem_partition_header __force *)part->virt_base;
p_end = (void *)phdr + part->size;
hdr = phdr_to_first_uncached_entry(phdr);
end = phdr_to_last_uncached_entry(phdr);
cached = phdr_to_last_cached_entry(phdr);
if (WARN_ON((void *)end > p_end || cached > p_end))
return -EINVAL;
while (hdr < end) {
if (hdr->canary != SMEM_PRIVATE_CANARY)
goto bad_canary;
if (le16_to_cpu(hdr->item) == item)
return -EEXIST;
hdr = uncached_entry_next(hdr);
}
if (WARN_ON((void *)hdr > p_end))
return -EINVAL;
/* Check that we don't grow into the cached region */
alloc_size = sizeof(*hdr) + ALIGN(size, 8);
if ((void *)hdr + alloc_size > cached) {
log_err("Out of memory\n");
return -ENOSPC;
}
hdr->canary = SMEM_PRIVATE_CANARY;
hdr->item = cpu_to_le16(item);
hdr->size = cpu_to_le32(ALIGN(size, 8));
hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
hdr->padding_hdr = 0;
/*
* Ensure the header is written before we advance the free offset, so
* that remote processors that does not take the remote spinlock still
* gets a consistent view of the linked list.
*/
wmb();
le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
return 0;
bad_canary:
log_err("Found invalid canary in hosts %hu:%hu partition\n",
le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
return -EINVAL;
}
static int qcom_smem_alloc_global(struct qcom_smem *smem,
unsigned item,
size_t size)
{
struct smem_global_entry *entry;
struct smem_header *header;
header = smem->regions[0].virt_base;
entry = &header->toc[item];
if (entry->allocated)
return -EEXIST;
size = ALIGN(size, 8);
if (WARN_ON(size > le32_to_cpu(header->available)))
return -ENOMEM;
entry->offset = header->free_offset;
entry->size = cpu_to_le32(size);
/*
* Ensure the header is consistent before we mark the item allocated,
* so that remote processors will get a consistent view of the item
* even though they do not take the spinlock on read.
*/
wmb();
entry->allocated = cpu_to_le32(1);
le32_add_cpu(&header->free_offset, size);
le32_add_cpu(&header->available, -size);
return 0;
}
/**
* qcom_smem_alloc() - allocate space for a smem item
* @host: remote processor id, or -1
* @item: smem item handle
* @size: number of bytes to be allocated
*
* Allocate space for a given smem item of size @size, given that the item is
* not yet allocated.
*/
int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
{
struct smem_partition *part;
int ret;
if (!__smem)
return -EPROBE_DEFER;
if (item < SMEM_ITEM_LAST_FIXED) {
log_err("Rejecting allocation of static entry %d\n", item);
return -EINVAL;
}
if (WARN_ON(item >= __smem->item_count))
return -EINVAL;
if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
part = &__smem->partitions[host];
ret = qcom_smem_alloc_private(__smem, part, item, size);
} else if (__smem->global_partition.virt_base) {
part = &__smem->global_partition;
ret = qcom_smem_alloc_private(__smem, part, item, size);
} else {
ret = qcom_smem_alloc_global(__smem, item, size);
}
return ret;
}
EXPORT_SYMBOL_GPL(qcom_smem_alloc);
static void *qcom_smem_get_global(struct qcom_smem *smem,
unsigned item,
size_t *size)
{
struct smem_header *header;
struct smem_region *region;
struct smem_global_entry *entry;
u64 entry_offset;
u32 e_size;
u32 aux_base;
unsigned i;
header = smem->regions[0].virt_base;
entry = &header->toc[item];
if (!entry->allocated)
return ERR_PTR(-ENXIO);
aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
for (i = 0; i < smem->num_regions; i++) {
region = &smem->regions[i];
if ((u32)region->aux_base == aux_base || !aux_base) {
e_size = le32_to_cpu(entry->size);
entry_offset = le32_to_cpu(entry->offset);
if (WARN_ON(e_size + entry_offset > region->size))
return ERR_PTR(-EINVAL);
if (size != NULL)
*size = e_size;
return region->virt_base + entry_offset;
}
}
return ERR_PTR(-ENOENT);
}
static void *qcom_smem_get_private(struct qcom_smem *smem,
struct smem_partition *part,
unsigned item,
size_t *size)
{
struct smem_private_entry *e, *end;
struct smem_partition_header *phdr;
void *item_ptr, *p_end;
u32 padding_data;
u32 e_size;
phdr = (struct smem_partition_header __force *)part->virt_base;
p_end = (void *)phdr + part->size;
e = phdr_to_first_uncached_entry(phdr);
end = phdr_to_last_uncached_entry(phdr);
while (e < end) {
if (e->canary != SMEM_PRIVATE_CANARY)
goto invalid_canary;
if (le16_to_cpu(e->item) == item) {
if (size != NULL) {
e_size = le32_to_cpu(e->size);
padding_data = le16_to_cpu(e->padding_data);
if (WARN_ON(e_size > part->size || padding_data > e_size))
return ERR_PTR(-EINVAL);
*size = e_size - padding_data;
}
item_ptr = uncached_entry_to_item(e);
if (WARN_ON(item_ptr > p_end))
return ERR_PTR(-EINVAL);
return item_ptr;
}
e = uncached_entry_next(e);
}
if (WARN_ON((void *)e > p_end))
return ERR_PTR(-EINVAL);
/* Item was not found in the uncached list, search the cached list */
e = phdr_to_first_cached_entry(phdr, part->cacheline);
end = phdr_to_last_cached_entry(phdr);
if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
return ERR_PTR(-EINVAL);
while (e > end) {
if (e->canary != SMEM_PRIVATE_CANARY)
goto invalid_canary;
if (le16_to_cpu(e->item) == item) {
if (size != NULL) {
e_size = le32_to_cpu(e->size);
padding_data = le16_to_cpu(e->padding_data);
if (WARN_ON(e_size > part->size || padding_data > e_size))
return ERR_PTR(-EINVAL);
*size = e_size - padding_data;
}
item_ptr = cached_entry_to_item(e);
if (WARN_ON(item_ptr < (void *)phdr))
return ERR_PTR(-EINVAL);
return item_ptr;
}
e = cached_entry_next(e, part->cacheline);
}
if (WARN_ON((void *)e < (void *)phdr))
return ERR_PTR(-EINVAL);
return ERR_PTR(-ENOENT);
invalid_canary:
log_err("Found invalid canary in hosts %hu:%hu partition\n",
le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
return ERR_PTR(-EINVAL);
}
/**
* qcom_smem_get() - resolve ptr of size of a smem item
* @host: the remote processor, or -1
* @item: smem item handle
* @size: pointer to be filled out with size of the item
*
* Looks up smem item and returns pointer to it. Size of smem
* item is returned in @size.
*/
void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
{
struct smem_partition *part;
void *ptr = ERR_PTR(-EPROBE_DEFER);
if (!__smem)
return ptr;
if (WARN_ON(item >= __smem->item_count))
return ERR_PTR(-EINVAL);
if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
part = &__smem->partitions[host];
ptr = qcom_smem_get_private(__smem, part, item, size);
} else if (__smem->global_partition.virt_base) {
part = &__smem->global_partition;
ptr = qcom_smem_get_private(__smem, part, item, size);
} else {
ptr = qcom_smem_get_global(__smem, item, size);
}
return ptr;
}
EXPORT_SYMBOL_GPL(qcom_smem_get);
/**
* qcom_smem_get_free_space() - retrieve amount of free space in a partition
* @host: the remote processor identifying a partition, or -1
*
* To be used by smem clients as a quick way to determine if any new
* allocations has been made.
*/
int qcom_smem_get_free_space(unsigned host)
{
struct smem_partition *part;
struct smem_partition_header *phdr;
struct smem_header *header;
unsigned ret;
if (!__smem)
return -EPROBE_DEFER;
if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
part = &__smem->partitions[host];
phdr = part->virt_base;
ret = le32_to_cpu(phdr->offset_free_cached) -
le32_to_cpu(phdr->offset_free_uncached);
if (ret > le32_to_cpu(part->size))
return -EINVAL;
} else if (__smem->global_partition.virt_base) {
part = &__smem->global_partition;
phdr = part->virt_base;
ret = le32_to_cpu(phdr->offset_free_cached) -
le32_to_cpu(phdr->offset_free_uncached);
if (ret > le32_to_cpu(part->size))
return -EINVAL;
} else {
header = __smem->regions[0].virt_base;
ret = le32_to_cpu(header->available);
if (ret > __smem->regions[0].size)
return -EINVAL;
}
return ret;
}
EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
static bool addr_in_range(void __iomem *base, size_t size, void *addr)
{
return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
}
/**
* qcom_smem_virt_to_phys() - return the physical address associated
* with an smem item pointer (previously returned by qcom_smem_get()
* @p: the virtual address to convert
*
* Returns 0 if the pointer provided is not within any smem region.
*/
phys_addr_t qcom_smem_virt_to_phys(void *p)
{
struct smem_partition *part;
struct smem_region *area;
u64 offset;
u32 i;
for (i = 0; i < SMEM_HOST_COUNT; i++) {
part = &__smem->partitions[i];
if (addr_in_range(part->virt_base, part->size, p)) {
offset = p - part->virt_base;
return (phys_addr_t)part->phys_base + offset;
}
}
part = &__smem->global_partition;
if (addr_in_range(part->virt_base, part->size, p)) {
offset = p - part->virt_base;
return (phys_addr_t)part->phys_base + offset;
}
for (i = 0; i < __smem->num_regions; i++) {
area = &__smem->regions[i];
if (addr_in_range(area->virt_base, area->size, p)) {
offset = p - area->virt_base;
return (phys_addr_t)area->aux_base + offset;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
{
struct smem_header *header;
__le32 *versions;
header = smem->regions[0].virt_base;
versions = header->version;
return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
}
static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
{
struct smem_ptable *ptable;
u32 version;
ptable = smem->ptable;
if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
return ERR_PTR(-ENOENT);
version = le32_to_cpu(ptable->version);
if (version != 1) {
log_err("Unsupported partition header version %d\n", version);
return ERR_PTR(-EINVAL);
}
return ptable;
}
static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
{
struct smem_ptable *ptable;
struct smem_info *info;
ptable = qcom_smem_get_ptable(smem);
if (IS_ERR_OR_NULL(ptable))
return SMEM_ITEM_COUNT;
info = (struct smem_info *)&ptable->entry[ptable->num_entries];
if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
return SMEM_ITEM_COUNT;
return le16_to_cpu(info->num_items);
}
/*
* Validate the partition header for a partition whose partition
* table entry is supplied. Returns a pointer to its header if
* valid, or a null pointer otherwise.
*/
static struct smem_partition_header *
qcom_smem_partition_header(struct qcom_smem *smem,
struct smem_ptable_entry *entry, u16 host0, u16 host1)
{
struct smem_partition_header *header;
u64 phys_addr;
u32 size;
phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
header = (void *)phys_addr; // devm_ioremap_wc()
if (!header)
return NULL;
if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
log_err("bad partition magic %4ph\n", header->magic);
return NULL;
}
if (host0 != le16_to_cpu(header->host0)) {
log_err("bad host0 (%hu != %hu)\n",
host0, le16_to_cpu(header->host0));
return NULL;
}
if (host1 != le16_to_cpu(header->host1)) {
log_err("bad host1 (%hu != %hu)\n",
host1, le16_to_cpu(header->host1));
return NULL;
}
size = le32_to_cpu(header->size);
if (size != le32_to_cpu(entry->size)) {
log_err("bad partition size (%u != %u)\n",
size, le32_to_cpu(entry->size));
return NULL;
}
if (le32_to_cpu(header->offset_free_uncached) > size) {
log_err("bad partition free uncached (%u > %u)\n",
le32_to_cpu(header->offset_free_uncached), size);
return NULL;
}
return header;
}
static int qcom_smem_set_global_partition(struct qcom_smem *smem)
{
struct smem_partition_header *header;
struct smem_ptable_entry *entry;
struct smem_ptable *ptable;
bool found = false;
int i;
if (smem->global_partition.virt_base) {
log_err("Already found the global partition\n");
return -EINVAL;
}
ptable = qcom_smem_get_ptable(smem);
if (IS_ERR(ptable))
return PTR_ERR(ptable);
for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
entry = &ptable->entry[i];
if (!le32_to_cpu(entry->offset))
continue;
if (!le32_to_cpu(entry->size))
continue;
if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
continue;
if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
found = true;
break;
}
}
if (!found) {
log_err("Missing entry for global partition\n");
return -EINVAL;
}
header = qcom_smem_partition_header(smem, entry,
SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
if (!header)
return -EINVAL;
smem->global_partition.virt_base = (void __iomem *)header;
smem->global_partition.phys_base = smem->regions[0].aux_base +
le32_to_cpu(entry->offset);
smem->global_partition.size = le32_to_cpu(entry->size);
smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
return 0;
}
static int
qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
{
struct smem_partition_header *header;
struct smem_ptable_entry *entry;
struct smem_ptable *ptable;
u16 remote_host;
u16 host0, host1;
int i;
ptable = qcom_smem_get_ptable(smem);
if (IS_ERR(ptable))
return PTR_ERR(ptable);
for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
entry = &ptable->entry[i];
if (!le32_to_cpu(entry->offset))
continue;
if (!le32_to_cpu(entry->size))
continue;
host0 = le16_to_cpu(entry->host0);
host1 = le16_to_cpu(entry->host1);
if (host0 == local_host)
remote_host = host1;
else if (host1 == local_host)
remote_host = host0;
else
continue;
if (remote_host >= SMEM_HOST_COUNT) {
log_err("bad host %u\n", remote_host);
return -EINVAL;
}
if (smem->partitions[remote_host].virt_base) {
log_err("duplicate host %u\n", remote_host);
return -EINVAL;
}
header = qcom_smem_partition_header(smem, entry, host0, host1);
if (!header)
return -EINVAL;
smem->partitions[remote_host].virt_base = (void __iomem *)header;
smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
le32_to_cpu(entry->offset);
smem->partitions[remote_host].size = le32_to_cpu(entry->size);
smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
}
return 0;
}
static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
{
u32 ptable_start;
/* map starting 4K for smem header */
region->virt_base = (void *)region->aux_base;
ptable_start = region->aux_base + region->size - SZ_4K;
/* map last 4k for toc */
smem->ptable = (struct smem_ptable *)(u64)ptable_start;
if (!region->virt_base || !smem->ptable)
return -ENOMEM;
return 0;
}
static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
{
u64 phys_addr;
phys_addr = smem->regions[0].aux_base;
smem->regions[0].size = size;
smem->regions[0].virt_base = (void *)phys_addr;
if (!smem->regions[0].virt_base)
return -ENOMEM;
return 0;
}
int qcom_socinfo_init(void)
{
struct socinfo *info;
size_t item_size;
char buf[32] = { 0 };
info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID,
&item_size);
if (IS_ERR(info)) {
log_err("Couldn't find socinfo: %ld\n", PTR_ERR(info));
return PTR_ERR(info);
}
if (offsetof(struct socinfo, serial_num) <= item_size) {
snprintf(buf, sizeof(buf), "%u", le32_to_cpu(info->serial_num));
env_set("serial#", buf);
} else {
return -ENOENT;
}
return 0;
}
int qcom_smem_init(void)
{
struct smem_header *header;
struct qcom_smem *smem;
int num_regions;
fdt_size_t reg_size = 0;
u32 phandle;
ofnode node, mem_node;
u32 version;
u32 size;
int ret;
int i;
if (__smem)
return 0;
num_regions = 1;
node = ofnode_by_compatible(ofnode_root(), "qcom,smem");
if (!ofnode_valid(node))
return -ENODEV;
if (ofnode_has_property(node, "memory-region")) {
ofnode_read_u32(node, "memory-region", &phandle);
mem_node = ofnode_get_by_phandle(phandle);
} else {
mem_node = node;
}
smem = kzalloc(sizeof(struct smem_region) * num_regions +
sizeof(struct qcom_smem),
GFP_KERNEL);
if (!smem) {
log_err("Failed to allocate memory for smem\n");
return -ENOMEM;
}
smem->num_regions = num_regions;
smem->regions[0].aux_base = ofnode_get_addr(mem_node);
reg_size = ofnode_get_size(mem_node);
if (smem->regions[0].aux_base == FDT_ADDR_T_NONE) {
log_err("Failed to get base address\n");
return -EINVAL;
}
smem->regions[0].size = reg_size;
ret = qcom_smem_map_toc(smem, &smem->regions[0]);
if (ret) {
log_err("Failed to map toc\n");
return ret;
}
for (i = 1; i < num_regions; i++) {
smem->regions[i].virt_base = (void *)smem->regions[i].aux_base;
}
header = smem->regions[0].virt_base;
if (le32_to_cpu(header->initialized) != 1 ||
le32_to_cpu(header->reserved)) {
log_err("SMEM is not initialized by SBL\n");
return -EINVAL;
}
size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
version = qcom_smem_get_sbl_version(smem);
switch (version >> 16) {
case SMEM_GLOBAL_PART_VERSION:
ret = qcom_smem_set_global_partition(smem);
if (ret < 0)
return ret;
smem->item_count = qcom_smem_get_item_count(smem);
break;
case SMEM_GLOBAL_HEAP_VERSION:
qcom_smem_map_global(smem, size);
smem->item_count = SMEM_ITEM_COUNT;
break;
default:
log_err("Unsupported SMEM version 0x%x\n", version);
return -EINVAL;
}
BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
if (ret < 0 && ret != -ENOENT) {
log_err("Failed to enumerate partitions\n");
return ret;
}
__smem = smem;
return 0;
}