Files
u-boot/fs/exfat/mount.c
Marek Vasut daa6d6a67d fs: exfat: Add U-Boot porting layer
Add U-Boot adjustments to the libexfat code and integrate
the result into U-Boot filesystem layer. This provides full
read-write exfat support for U-Boot available via generic
filesystem interface.

FS_DIRENT_NAME_LEN is increased to 1024 in case exfat is
enabled, because EXFAT can use UTF16 names, which do not
fit into current FS_DIRENT_NAME_LEN. To avoid affecting
every configuration, increase FS_DIRENT_NAME_LEN only in
case EXFAT is enabled.

Example usage via sandbox, assuming disk.img with one exfat partition:

Drive info:
$ ./u-boot -Tc 'host bind 0 ../disk.img ; host info 0'
dev       blocks  blksz label           path
  0       262144    512 0               ../disk.img

List files:
$ ./u-boot -Tc 'host bind 0 ../disk.img ; ls host 0:1 /api'
      475   Kconfig
      230   Makefile
     1873   README
     ...
10 file(s), 0 dir(s)

Load and checksum a file:
$ ./u-boot -Tc 'host bind 0 ../disk.img ; load host 0:1 $loadaddr .config ; \
                crc32 $loadaddr $filesize'
56724 bytes read in 1 ms (54.1 MiB/s)
crc32 for 00000000 ... 0000dd93 ==> b2e847c9

$ crc32 .config
b2e847c9

Load .config file to RAM, store the file into FS as /newconfig,
load the /newconfig into RAM and checksum the file:
$ ./u-boot -Tc 'host bind 0 ../disk.img ; load host 0:1 $loadaddr .config ; \
		save host 0:1 $loadaddr /newconfig $filesize ; \
		load host 0:1 0x10000 /newconfig ; \
		crc32 0x10000 $filesize'
56724 bytes read in 1 ms (54.1 MiB/s)
56724 bytes written in 0 ms
56724 bytes read in 0 ms
crc32 for 00010000 ... 0001dd93 ==> b2e847c9

Remove file 3.txt and create new directory /newdir:
$ ./u-boot -Tc 'host bind 0 ../disk.img ; ls host 0:1 / ; \
                rm host 0:1 3.txt ; mkdir host 0:1 /newdir ; \
		ls host 0:1 /'
...
        0   1.txt
        0   2.txt
        0   3.txt
        0   4.txt
        0   5.txt

7 file(s), 4 dir(s)
...
        0   1.txt
        0   2.txt
            newdir/
        0   4.txt
        0   5.txt

6 file(s), 5 dir(s)

Acked-by: Tom Rini <trini@konsulko.com>
Signed-off-by: Marek Vasut <marex@denx.de>
2025-05-01 05:56:47 -06:00

376 lines
9.8 KiB
C

/*
mount.c (22.10.09)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2023 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <inttypes.h>
#ifndef __UBOOT__
#include <unistd.h>
#include <sys/types.h>
#endif
static uint64_t rootdir_size(const struct exfat* ef)
{
uint32_t clusters = 0;
uint32_t clusters_max = le32_to_cpu(ef->sb->cluster_count);
cluster_t rootdir_cluster = le32_to_cpu(ef->sb->rootdir_cluster);
/* Iterate all clusters of the root directory to calculate its size.
It can't be contiguous because there is no flag to indicate this. */
do
{
if (clusters == clusters_max) /* infinite loop detected */
{
exfat_error("root directory cannot occupy all %d clusters",
clusters);
return 0;
}
if (CLUSTER_INVALID(*ef->sb, rootdir_cluster))
{
exfat_error("bad cluster %#x while reading root directory",
rootdir_cluster);
return 0;
}
rootdir_cluster = exfat_next_cluster(ef, ef->root, rootdir_cluster);
clusters++;
}
while (rootdir_cluster != EXFAT_CLUSTER_END);
return (uint64_t) clusters * CLUSTER_SIZE(*ef->sb);
}
static const char* get_option(const char* options, const char* option_name)
{
const char* p;
size_t length = strlen(option_name);
for (p = strstr(options, option_name); p; p = strstr(p + 1, option_name))
if ((p == options || p[-1] == ',') && p[length] == '=')
return p + length + 1;
return NULL;
}
static int get_int_option(const char* options, const char* option_name,
int base, int default_value)
{
const char* p = get_option(options, option_name);
if (p == NULL)
return default_value;
return strtol(p, NULL, base);
}
static void parse_options(struct exfat* ef, const char* options)
{
int opt_umask;
opt_umask = get_int_option(options, "umask", 8, 0);
ef->dmask = get_int_option(options, "dmask", 8, opt_umask);
ef->fmask = get_int_option(options, "fmask", 8, opt_umask);
ef->uid = get_int_option(options, "uid", 10, geteuid());
ef->gid = get_int_option(options, "gid", 10, getegid());
ef->noatime = exfat_match_option(options, "noatime");
switch (get_int_option(options, "repair", 10, 0))
{
case 1:
ef->repair = EXFAT_REPAIR_ASK;
break;
case 2:
ef->repair = EXFAT_REPAIR_YES;
break;
default:
ef->repair = EXFAT_REPAIR_NO;
break;
}
}
static bool verify_vbr_checksum(const struct exfat* ef, void* sector)
{
off_t sector_size = SECTOR_SIZE(*ef->sb);
uint32_t vbr_checksum;
size_t i;
if (exfat_pread(ef->dev, sector, sector_size, 0) < 0)
{
exfat_error("failed to read boot sector");
return false;
}
vbr_checksum = exfat_vbr_start_checksum(sector, sector_size);
for (i = 1; i < 11; i++)
{
if (exfat_pread(ef->dev, sector, sector_size, i * sector_size) < 0)
{
exfat_error("failed to read VBR sector");
return false;
}
vbr_checksum = exfat_vbr_add_checksum(sector, sector_size,
vbr_checksum);
}
if (exfat_pread(ef->dev, sector, sector_size, i * sector_size) < 0)
{
exfat_error("failed to read VBR checksum sector");
return false;
}
for (i = 0; i < sector_size / sizeof(vbr_checksum); i++)
if (le32_to_cpu(((const le32_t*) sector)[i]) != vbr_checksum)
{
exfat_error("invalid VBR checksum 0x%x (expected 0x%x)",
le32_to_cpu(((const le32_t*) sector)[i]), vbr_checksum);
if (!EXFAT_REPAIR(invalid_vbr_checksum, ef, sector, vbr_checksum))
return false;
}
return true;
}
static int commit_super_block(const struct exfat* ef)
{
if (exfat_pwrite(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0) < 0)
{
exfat_error("failed to write super block");
return 1;
}
return exfat_fsync(ef->dev);
}
int exfat_soil_super_block(const struct exfat* ef)
{
if (ef->ro)
return 0;
ef->sb->volume_state = cpu_to_le16(
le16_to_cpu(ef->sb->volume_state) | EXFAT_STATE_MOUNTED);
return commit_super_block(ef);
}
static void exfat_free(struct exfat* ef)
{
exfat_close(ef->dev); /* first of all, close the descriptor */
ef->dev = NULL; /* struct exfat_dev is freed by exfat_close() */
free(ef->root);
ef->root = NULL;
free(ef->zero_cluster);
ef->zero_cluster = NULL;
free(ef->cmap.chunk);
ef->cmap.chunk = NULL;
free(ef->upcase);
ef->upcase = NULL;
free(ef->sb);
ef->sb = NULL;
}
int exfat_mount(struct exfat* ef, const char* spec, const char* options)
{
int rc;
enum exfat_mode mode;
exfat_tzset();
memset(ef, 0, sizeof(struct exfat));
parse_options(ef, options);
if (exfat_match_option(options, "ro"))
mode = EXFAT_MODE_RO;
else if (exfat_match_option(options, "ro_fallback"))
mode = EXFAT_MODE_ANY;
else
mode = EXFAT_MODE_RW;
ef->dev = exfat_open(spec, mode);
if (ef->dev == NULL)
return -ENODEV;
if (exfat_get_mode(ef->dev) == EXFAT_MODE_RO)
{
if (mode == EXFAT_MODE_ANY)
ef->ro = -1;
else
ef->ro = 1;
}
ef->sb = malloc(sizeof(struct exfat_super_block));
if (ef->sb == NULL)
{
exfat_error("failed to allocate memory for the super block");
exfat_free(ef);
return -ENOMEM;
}
memset(ef->sb, 0, sizeof(struct exfat_super_block));
if (exfat_pread(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0) < 0)
{
exfat_error("failed to read boot sector");
exfat_free(ef);
return -EIO;
}
if (memcmp(ef->sb->oem_name, "EXFAT ", 8) != 0)
{
exfat_error("exFAT file system is not found");
exfat_free(ef);
return -EIO;
}
/* sector cannot be smaller than 512 bytes */
if (ef->sb->sector_bits < 9)
{
exfat_error("too small sector size: 2^%hhd", ef->sb->sector_bits);
exfat_free(ef);
return -EIO;
}
/* officially exFAT supports cluster size up to 32 MB */
if ((int) ef->sb->sector_bits + (int) ef->sb->spc_bits > 25)
{
exfat_error("too big cluster size: 2^(%hhd+%hhd)",
ef->sb->sector_bits, ef->sb->spc_bits);
exfat_free(ef);
return -EIO;
}
ef->zero_cluster = malloc(CLUSTER_SIZE(*ef->sb));
if (ef->zero_cluster == NULL)
{
exfat_error("failed to allocate zero sector");
exfat_free(ef);
return -ENOMEM;
}
/* use zero_cluster as a temporary buffer for VBR checksum verification */
if (!verify_vbr_checksum(ef, ef->zero_cluster))
{
exfat_free(ef);
return -EIO;
}
memset(ef->zero_cluster, 0, CLUSTER_SIZE(*ef->sb));
if (ef->sb->version.major != 1 || ef->sb->version.minor != 0)
{
exfat_error("unsupported exFAT version: %hhu.%hhu",
ef->sb->version.major, ef->sb->version.minor);
exfat_free(ef);
return -EIO;
}
if (ef->sb->fat_count != 1)
{
exfat_error("unsupported FAT count: %hhu", ef->sb->fat_count);
exfat_free(ef);
return -EIO;
}
if (le64_to_cpu(ef->sb->sector_count) * SECTOR_SIZE(*ef->sb) >
(uint64_t) exfat_get_size(ef->dev))
{
/* this can cause I/O errors later but we don't fail mounting to let
user rescue data */
exfat_warn("file system in sectors is larger than device: "
"%"PRIu64" * %d > %"PRIu64,
le64_to_cpu(ef->sb->sector_count), SECTOR_SIZE(*ef->sb),
exfat_get_size(ef->dev));
}
if ((off_t) le32_to_cpu(ef->sb->cluster_count) * CLUSTER_SIZE(*ef->sb) >
exfat_get_size(ef->dev))
{
exfat_error("file system in clusters is larger than device: "
"%u * %d > %"PRIu64,
le32_to_cpu(ef->sb->cluster_count), CLUSTER_SIZE(*ef->sb),
exfat_get_size(ef->dev));
exfat_free(ef);
return -EIO;
}
if (le16_to_cpu(ef->sb->volume_state) & EXFAT_STATE_MOUNTED)
exfat_warn("volume was not unmounted cleanly");
ef->root = malloc(sizeof(struct exfat_node));
if (ef->root == NULL)
{
exfat_error("failed to allocate root node");
exfat_free(ef);
return -ENOMEM;
}
memset(ef->root, 0, sizeof(struct exfat_node));
ef->root->attrib = EXFAT_ATTRIB_DIR;
ef->root->start_cluster = le32_to_cpu(ef->sb->rootdir_cluster);
ef->root->fptr_cluster = ef->root->start_cluster;
ef->root->name[0] = cpu_to_le16('\0');
ef->root->valid_size = ef->root->size = rootdir_size(ef);
if (ef->root->size == 0)
{
exfat_free(ef);
return -EIO;
}
/* exFAT does not have time attributes for the root directory */
ef->root->mtime = 0;
ef->root->atime = 0;
/* always keep at least 1 reference to the root node */
exfat_get_node(ef->root);
rc = exfat_cache_directory(ef, ef->root);
if (rc != 0)
goto error;
if (ef->upcase == NULL)
{
exfat_error("upcase table is not found");
goto error;
}
if (ef->cmap.chunk == NULL)
{
exfat_error("clusters bitmap is not found");
goto error;
}
return 0;
error:
exfat_put_node(ef, ef->root);
exfat_reset_cache(ef);
exfat_free(ef);
return -EIO;
}
static void finalize_super_block(struct exfat* ef)
{
if (ef->ro)
return;
ef->sb->volume_state = cpu_to_le16(
le16_to_cpu(ef->sb->volume_state) & ~EXFAT_STATE_MOUNTED);
/* Some implementations set the percentage of allocated space to 0xff
on FS creation and never update it. In this case leave it as is. */
if (ef->sb->allocated_percent != 0xff)
{
uint32_t free, total;
free = exfat_count_free_clusters(ef);
total = le32_to_cpu(ef->sb->cluster_count);
ef->sb->allocated_percent = ((total - free) * 100 + total / 2) / total;
}
commit_super_block(ef); /* ignore return code */
}
void exfat_unmount(struct exfat* ef)
{
exfat_flush_nodes(ef); /* ignore return code */
exfat_flush(ef); /* ignore return code */
exfat_put_node(ef, ef->root);
exfat_reset_cache(ef);
finalize_super_block(ef);
exfat_free(ef); /* will close the descriptor */
}